Measurement of Froth Stability in Flotation Cells and Investigation of the Impact of Factors Affecting It

Document Type : Research - Paper

Authors

1 Ph.D, Dept. of Mining & Metallurgical Engineering, University of Yazd, Yazd, Iran

2 Iranian Mines & Mining Industries Development & Renovation Organization (IMIDRO), Tehran, Iran

3 Assistant Professor, Dept. of Mining & Metallurgical Engineering, University of Yazd, Yazd, Iran

4 Associate Professor, GeoRessources, University of Lorraine, 54505 Nancy, France

5 Associate Professor, Dept. of Mining & Metallurgical Engineering, University of Yazd, Yazd, Iran

6 M.Sc, Dept. of Mining, Islamic Azad University of Golpayegan, Isfahan, Iran

Abstract

Froth stability is of particular importance and  has a significant impact on the flotation process. Froth stability can be defined based on the formation of froth (maximum froth height or froth retention time) or the froth decay (froth half-life). Froth stability is influenced by various factors such as the superficial air velocity (Jg), the collector dosage (CC), frother dosage (FC) and the sample particle size (d50). In this work the effects of these factors were examined. The results showed that increasing the Jg, the CC and the FC will increae the froth stability. For example, by increasing the FC from 60 to 140 g/liter, the froth retention time (FRT) and the half-life froth (t1/2) increased by 92% and 71%, respectively. Sample particle size behaved differently in froth formation and decay, so that by reducing the d50, the froth retention time increased but the froth half-life decreased.

Keywords

Main Subjects


  1. Farrokhpay, S. (2011). “The significance of froth stability in mineral flotation - A review”. Advances in Colloid and Interface Science, 166: 1-7.
  2. Aktas, Z., Cilliers, J. J., and Banford, A. W. (2008). “Dynamic froth stability: Particle size, airflow rate and conditioning time effects”. International Journal of Mineral Processing, 87: 65-71.
  3. Tsatouhas, G., Grano, S., and Vera, M. (2006). “Case studies on the performance and characterisation of the froth phase in industrial flotation circuits”. Minerals Engineering, 19: 774-783.
  4. Barbian, N., Cilliers, J. J., Morar, S. H., and Bradshaw, D. J. (2007). “Froth imaging, air recovery and bubble loading to describe flotation bank performance”. International Journal of Mineral Processing, 84: 81-88.
  5. Zheng, X., Franzidis, J-P., and Johnson, N. W. (2006). “An evaluation of different models of water recovery in flotation”. Minerals Engineering, 19: 871-882.
  6. Zanin, M., Wightman, E., Grano. S. R., and Franzidis, J.-P. (2009). “Quantifying contributions to froth stability in porphyry copper plants”. International Journal of Mineral Processing, 91: 19-27.
  7. Gorain, B., Oravainen, H., Allenius, H., Peaker, R., Weber, A., and Tracyzk, F. (2009). “Mechanical froth flotation cells”. In “Froth flotation, a century of innovation”, Edited Fuerstenau, M. C., Jameson, G. J., and Yoon, R.-H., Society for Mining, Metallurgy, and Exploration, SME, Colorado, 709-710.
  8. Achaye, I. (2018). “Effect of particle properties on froth stability”. Ph.D Thesis, University of Cape Town, South Africa, Cape Town, 59-119.
  9. Norori-McCormac, A., Brito-Parada, P. R., Hadler, C. K., and Cilliers, J. J. (2017). “The effect of particle size distribution on froth stability in flotation”. Separation and Purification Technology, 184: 240-247.
  10. Cilek, E. C., and Uysal, K. (2018). “Froth stabilization using nanoparticles in mineral flotation”. Physicochemical Problems of Mineral Processing, 54(3): 878-889.
  11. Aveyard, R., Binks, B. P., Fletcher, P. D. I., Peck, T. G., and Rutherford, C. E. (1994). “Aspects of aqueous foam stability in the presence of hydrocarbon oils and solid particles”. Advances in Colloid and Internee Science, 48: 93-120.
  12. Long Liang, L., Li. Z., Peng, Y., Tan, J., and Xie, G. (2015). “Influence of coal particles on froth stability and flotation performance”. Minerals Engineering, 81: 10-96.
  13. Ata, S., Ahmed, N., and Jameson, G. J. (2004). “The effect of hydrophobicity on the drainage of gangue minerals in flotation froths”. Minerals Engineering, 17: 897-901.
  14. Pugh, R. J. (2005). “Experimental techniques for studying the structure of foams and froths”. Advances in Colloid and Interface Science, 114(115): 239-251.
  15. Mackay, I., Videla, A. R., and Brito-Parada, P. R. (2020). “The link between particle size and froth stability Implications for reprocessing of flotation tailings”. Journal of Cleaner Production, 242: 118436.
  16. Li, Ch., Cao, Y., Peng, W., and Shi., F. (2020). “On the correlation between froth stability and viscosity in flotation”. Minerals Engineering, 149: 106269.
  17. Fang, J., Ge, Y., and Yu, J. (2021). “Effects of particle size and wettability on froth stability in a collophane flotation system”. Powder Technology, 379: 576-584.
  18. Ata, S. (2009). “The detachment of particles from coalescing bubble pairs”. Journal of Colloid and Interface Science, 338: 558-565.
  19. Gupta, A. K., Banerjee, P. K., Mishra, A., Satish, P. (2007). “Effect of alcohol and polyglycol ether frothers on foam stability”. International Journal of Mineral Processing, 82: 126-137.
  20. McFadzean, B., Marozva, T., and Wiese, J. (2015). “Flotation frother mixtures: Decoupling the sub-processes of froth stability, froth recovery and entrainment”. Minerals Engineering, 85: 72-79.
  21. Manoli, S., and Avranas, A. (2013). “Aqueous solutions of the double chain cationic surfactants didodecyldi-methylammonium bromide and ditetradecyl-dimethylammonium bromide with Pluronic F68: dynamic surface tension measurements”. Colloids and Surfaces A, 436: 1060-1068.
  22. Farrokhpay, S., and Zanin, M. (2012). “An investigation into the effect of water quality on froth stability”. Advanced Powder Technology, 23: 493-497.
  23. Sheni, N., Corin, K., and Wiese, J. (2018). “Considering the effect of pulp chemistry during flotation on froth stability”. Minerals Engineering, 116: 15-23.
  24. Manono, M. S., Corin, K. C., and Wiese, J. G. (2012). “An investigation into the effect of various ions and their ionic strength on the flotation performance of a platinum bearing ore from the Merensky reef”. Minerals Engineering, 36-38: 231-236.
  25. Montgomery, D. (2012). “Design and analysis of experiments (8th ed.)”. Hoboken, N. J., John Wiley & Sons, Inc.
  26. Pérez-Garibay, R., Ramirez-Aguilera, N., Bouchard, J., and Rubio, J. (2014). “Froth flotation of sphalerite: Collector concentration, gas dispersion and particle size effects”. Minerals Engineering, 57: 72-78.
  27. James noel, L., Prokop, A., and Tanner, R. D. (2002). “Foam fractionation of a dilute solution of bovine lactoferrin”. Applied Biochemistry and Biotechnology, 98-100: 395-402.
  28. Al-Fariss, T. F., El-Aleem, F. A., and El-Nagdy, K. A. (2013). “Beneficiation of Saudi phosphate ores by column flotation technology”. Journal of King Saud University Engineering Sciences, 25: 113-117.
  29. Eskanlou, A., Khalesi, M. R., Abdollahy, M., and Hemmati, C. M. (2018). “Interactional effects of bubble size, particle size, and collector dosage on bubble loading in column flotation”. Journal of Mining and Environment, 9: 107-116.
  30. Ata, S., and Jameson, G. J. (2005). “The formation of bubble clusters in flotation cells”. International Journal of Mineral Processing, 76: 123-139.
  31. Wei, Z., Finch, J. A. (2014). “Effect of solids on pulp and froth properties in flotation”. Journal of Central South University, 21: 1461-1469.
  32. Zhu, H., Valdivieso, A. L., Zhu, J., Min, F., Song, Sh., and A-C-Arroyo, M. (2019). “Air dispersion and bubble characteristics in a downflow flotation column”. Mineral Processing and Extractive Metallurgy Review, 40(3): 224-229.
  33. Reis, A. S., Reis Filho, A. M., Demuner, L. R., and Barrozo, M. A. S. (2019). “Effect of bubble size on the performance flotation of fine particles of a low-grade Brazilian apatite ore”. Powder Technology, 356: 884-891.
  34. Li, Ch., Farrokhpay, S., Runge, K., and Shi, F. (2016). “Determining the significance of flotation variables on froth rheology using a central composite rotatable design”. Powder Technology, 287: 216-225.
  35. Cilek, E. C., and Umuka, Y. (2001). “A statistical model for gangue entrainment into froths flotation of supplied ores”. Minerals Engineering, 14(9): 1055-1066.
  36. Wang, L., Peng, Y., Runge, K., and Bradshaw, D. (2015). “A review of entrainment: Mechanisms, contributing factors and modelling in flotation”. Minerals Engineering, 70: 77-91.