Numerical Analysis of Effect of Different Shapes of Pore on Tensile Crack Growth

Document Type : Research - Paper

Authors

1 M.Sc, Dept. of Mining Engineering, University of Zanjan, Zanjan, Iran

2 Assistant Professor, Dept. of Material Engineering, University of Zanjan, Zanjan, Iran

3 Associate Professor, Dept. of Mining Engineering, University of Zanjan, Zanjan, Iran

Abstract

Recent development in eXtended Finite Element Method (XFEM) opened new avenues thorough crack propagation problems. However, it ability to predict crack path in micro scale medium of a real porous rock is always questionable. In this work, numerical modeling of the effect of pore size on crack growth and comparison of the effect of different pore shapes and location has been developed using the finite element method to compare the maximum strength of reservoirs and complex rock models. The results showed that the equivalence of the main pores in the sample with simple geometric shapes such as circles, ellipses and angled shapes can well simulate the mechanical behavior of materials and crack growth in Phenomena such as hydraulic fracturing.

Keywords


  1. Khoei, A. R., Vhab, M., Haghighat, E., and Moallemi, S. (2014). “A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique”. International Journal of Fracture, 188: 79-108.
  2. Bohloli, B., and De Pater, C. J. (2006). “Experimental study on hydraulic fracturing of soft rocks: Influence of fluid reology and confining stress”. Journal of Petroleum Science and Engineering, 53: 1-12.
  3. De Pater, C. J., and Beugelsdijk, L. J. L. (2005). “Experiments and numerical simulation of hydraulic fracturing in naturally fractured rock”. The 40th U.S. Symposium on Rock Mechanics (USRMS), 25-29 June, Anchorage, Alaska.
  4. Zhang, G., and Chen, M. (2010). “Dynamic fracture propagation in hydraulic re-fracturing”. Journal of Petroleum Science and Engineering, 70: 266-272.
  5. Shimizu, H., Murata, S., and Ishida,T. (2011). “The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution”. International Journal of Rock Mechanics and Mining Sciences, 48: 712-727.
  6. Jianchun, G., Xing, Z., Haiyan, Z., Xudong, Z., and Rui, P. (2015). “Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method”. Journal of Natural Gas Science and Engineering, 25: 180-188.
  7. Beugelsdijk, L. J. L, De Pater, C. J., and Sato, K. (2000). “Experimental hydraulic fracture propagation in multi-fractured medium”. SPE 59419, Presented at the SPE Asia Pacific Conference on Integrated Modeling, Yokohoma, 25–26 April.
  8. Wu, H., Zhao, G., and Liang, W. (2020). “Mechanical properties and fracture characteristics of pre-holed rocks subjected to uniaxial loading: A comparative analysis of five hole shapes”. Theoretical and Applied Fracture Mechanics, 105: 102433.
  9. Zeng, W., Yang, S., and Tian, W. (2018). “Experimental and numerical investigation of brittle sandstone specimens containing different shapes of holes under uniaxial compression”. Engineering Fracture Mechanics, DOI: org/10.1016/j.engfracmech.2018.08.016.
  10. Rezanezhad, M., Lajevardi, S. A., and Karimpouli, S. (2019). “Effects of pore-crack relative location on crack propagation in porous media using XFEM method”. Theoretical and Applied Fracture Mechanics, 103(April): 102241.
  11. Rezanezhad, M., Lajevardi, S. A., and Karimpouli, S. (2020). “Effects of pore(s)-crack locations and arrangements on crack growth modeling in porous media”. Theoretical and Applied Fracture Mechanics, 107: 102529.
  12. Grigoriu, M., Saif, M. T. A., Borgi, S., and Ingraffea, A. R. (1990). “Mixed mode fracture initiation and trajectory prediction under random stresses”. International Journal of Fracture, 45: 19-34.
  13. Asadpoure, A., Mohammadi, S., and Vafai, A. (2006). “Crack analysis in orthotropic media using the extended finite element method”. Thin-Walled Structures, 44: 1031-1038.
  14. Wang, H. (2015). “Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method”. Journal of Petroleum Science and Engineering, 135: 127-140.
  15. Rezanezhad, M., Lajevardi, S. A., and Karimpouli, S. (2020). “Crack growth in porous media using XFEM: Comparison of modeling strategies in the Abaqus”. Journal of Analytical and Numerical Methods in Mining Engineering, 24(October): 27-40. (In Persian).
  16. Moghaddam, H., Keyhanib, A., and Aghayan, I. (2016). “Modeling of Crack Propagation in Layered Structures Using Extended Finite Element Method”. Civil Engineering Journal, 2(5). DOI: 10.28991/cej-2016-00000024.
  17. Zhang, C., Cao, P., Cao, Y., and Li, J. (2013). “Using finite element software to simulation fracture behavior of three-point bending beam with initial crack”. Journal of Software, 8(5): 1145-1150.
  18. Abdellah, M. Y. (2017). “Delamination modeling of double cantilever beam of unidirectional composite laminates”. Journal of Failure Analysis and Prevention, 17: 1011-1018.
  19. Arshadnejad, S. (2017). “Analysis of the First Cracks Generating  Between  Two  Holes  Under  Incremental Static   Loading   with an   Innovation   Method   byNumericalModelling”. Mathematics in Computer Science, 2: 120. DOI: 10.11648/j.mcs.20170206.15.
  20. Zhang , Z. (2002). “An  empirical  relation  between mode I fracture toughness and the tensile strength of rock”.  International Journal of Rock Mechanics and Mining Sciences, 39: 401-406. DOI: 10.1016/S1365-1609(02)00032-1.
  21. Bazant, Z. P.,  and Kazemi,  M. T. (1990). “Size  effect  in fracture  of  ceramics  and  its  use  to  determine fracture energy and effective process zone length”. Journal of the American Ceramic Society, 73: 1841-1853. DOI: 10.1111/j.1151-2916.1990.tb05233.x.
  22. Chen, M., and Wang, H. (2015). “Effect of pores on crack propagation behavior for porous Si3N4 ceramics”. Ceramics International, 20 November.
  23. Konietzky, H., and Xiang, L. (2014). “Simulation of time-dependent crack growth in brittle rocks under constant loading conditions”. Engineering Fracture Mechanics, 119: 53-65.
  24. Andra, H., and Combaret, N. (2013). “Digital rock physics benchmarks Part I:Imaging and segmentation”. Computers & Geosciences 50, 25-32.
  25. Whittaker, B. N., Singh, R. N., and Sun, G. (1992). “Rock fracture mechanics: principles, design and applications”. Amsterdam: Elsevier.
  26. Zhu, J. B.,  Bao, W. Y.,  Pen,  Q.,  and Deng,  X.  F. (2020). “Influence  of  substrate  properties  and  interfacial roughness  on  static  and  dynamic  tensile  behaviour  of  rock-shotcrete  interface  from  macro and micro views”. International Journal of Rock Mechanics and Mining Sciences, 132: 104350.  
  27. Rezanezhad, M., Lajevardi, S. A., and Karimpouli, S. (2021). “Numerical study of crack growth in porous media: Effect of elliptical porosity parameters”. Journal of Analytical and Numerical Methods in Mining Engineering, (In Persian). DOI: 10.29252/ANM.2021.15697.1477.