Identification of Promising Areas with Remote Sensing Satellite Data in Karijgan, Khosf- Birjand

Document Type : Technical Note

Authors

1 Ph.D, Dept. of Mining Engineering, Head of R&D in Investment Group of Foladgostar Kowsar, Tabriz, Iran

2 Ph.D Student, Dept. of Geology, Director of the Technical Office in Tavaran Sahand Industrial Group, Tabriz, Iran

3 Ph.D Student, Dept. of Geology, Director of the Technical Office in Investment Group of Foladgostar Kowsar, Tabriz, Iran

4 Ph.D, Dept. of Mining Engineering, Director of Explorations in Investment Group of Foladgostar Kowsar, Tabriz, Iran

5 Ph.D Student, Dept. of Mining Engineering, Consultant of Explorations in Investment Group of Foladgostar Kowsar, Tabriz, Iran

Abstract

This study aims to use the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing data to identify promising areas and design a targeted preliminary survey in the Karijgan area located in Khosuf-Birjand. Therefore, at first, necessary pre-processing, such as atmospheric and topographic corrections, was applied to the data. Then, from conventional processing methods on multispectral data, including band ratio, principal component analysis (PCA), and its improved type, the selective principal component analysis method (CROSTA), promising areas were identified. In this case, by using the band ratio method, index areas prone to iron oxides, silica, carbonate, chlorite and epidote, alunite, kaolinite and pyrophyllite, sericite, muscovite, illite, and smectite were identified. Also, with the Crosta method, various types of main alterations (propylitic, argillic, and phyllic) were determined. Finally, by combining the results, promising areas were identified for preliminary surveys. A check field and sampling of the identified areas were done to validate the processing results. The results of the sample analysis by ICP-OES and X-ray diffraction (XRD) showed good agreement and accuracy with the results obtained from the remote sensing processing of the Karijgan area.

Keywords

Main Subjects


  1. Richards, J. A., and Jia, X. (2006). “Remote sensing Digital Image Analysis an  Introduction”. 4th Edition, Springer, Germany, Berlin, Heidelberg.
  2. Gupta, R. P. (2003). “Remote Sensing Geology”. Heidelberg, Springer, 45-59.
  3. Rajendran, S., and Nasir, S. (2018). “ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman”. Ore Geology Reviews, 108: 33-53.
  4. Mirsepahvand, F., Jafari, M. R., Afzal, P., and Arian, M. A. (2022). “Identification of Alteration Zones using ASTER Data for Metallic Mineralization in Ahar region, NW Iran”. Journal of Mining and Environment, 13(1): 309-324.
  5. Fakhari, S., Jafarirad, A., Afzal, P., and Lotfi, M. (2019). “Delineation of hydrothermal alteration zones for porphyry systems utilizing ASTER data in Jebal-Barez area, SE Iran”. Iranian Journal of Earth Sciences, 11(1): 80-92.
  6. Sheikhrahimi, A., Pour, A. B., Pradhan, B., and Zoheir, B. (2019). “Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER data: A case study from the Sanandaj-Sirjan Zone, Iran”. Advances in Space Research, 63(10): 3315-3332.
  7. Rezaei, A., Hassani, H., Moarefvand, P., and Golmohammadi, A. (2020). “Lithological mapping in Sangan region in Northeast Iran using ASTER satellite data and image processing methods”. Geology, Ecology, and Landscapes, 4(1): 59-70.
  8. Zamyad, M., Afzal, P., Pourkermani, M., Nouri, R., and Jafari, M. R. (2019). “Determination of hydrothermal alteration zones using remote sensing methods in Tirka area, Toroud, NE Iran”. Journal of the Indian Society of Remote Sensing, 47: 1817-1830.
  9. Pour, A. B., Park, Y., Park, T. Y. S., Hong, J. K., Hashim, M., Woo, J., and Ayoobi, I. (2018). “Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica”. Polar Science, 16: 23-46.
  10. ماهوش محمدی، ن.، هزارخانی، ا.، مقصودی، ع.؛ 1397؛ "به کار‌گیری روش‌های مختلف پردازش تصاویر ماهواره‌ای به منظور شناسایی و تفکیک بخش‌های دگرسانی منطقه خونی و کالکافی (استان اصفهان)". پژوهش‌های دانش زمین، دوره نهم، شماره 1، ص 152-137.
  11. Azizi, H., Tarverdi, M. A., and Akbarpour, A. (2010). “Extraction of hydrothermal alterations from ASTER SWIR datafrom east Zanjan, northern Iran”. Advances in Space Research, 46: 99-109.
  12. Beiravand Pour, A., and Hashim, M. (2012). “The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits”. Ore Geology Reviews, 44: 1-9.
  13. Boloki, M., and Poormirzaee, R. (2009). “Using ASTER Image Processing for Hydrothermal Alteration and Key Alteration Minerals Mapping in Siyahrud area, Iran”. International Journal of Geology, 3: 38-43.
  14. Honarmand, M., Ranjbar, H., and Shahabpour, J. (2012). “Application of principal component analysis and spectral angle mapper in the mapping of hydrothermal alteration in the Jebal–Barez Area, Southeastern Iran”. Resource Geology, 62(2): 119-139.
  15. Alimohammadi, M., Alirezaei, S., and Kontak, D. J. (2015). “Application of ASTER data for exploration of porphyry copper deposits: a case study of Daraloo-Sarmeshk area, southern part of the Kerman copper belt, Iran”. Ore Geology Reviews, 70: 290-304.
  16. Jamshid Moghadam, H., Mokhtari, M., Hamidi, H., and Yozbashlo, E. (2023). “Identification of gold promising areas in Tikmehdash area of Bostanabad using Aster data”. 11th Iranian Mining Engineering Conference and 7th International Mine & Mining Industries Congress, Tarbiat Modares University, Tehran, Iran.
  17. Rasouli Beirami, M., and Tangestani, M. H. (2020). “A new band ratio approach for discriminating calcite and dolomite by ASTER imagery in arid and semiarid regions”. Natural Resources Research, 29: 2949-2965.
  18. Paramasivam, C. R., and Anbazhagan, S. (2020). “Geospatial assessment of ultramafic rocks and ore minerals of Salem, India”. Arabian Journal of Geosciences, 13: 1095.
  19. Mojeddifar, S., and Mavadati, M. (2020). “Integration of support vector machines for hydrothermal alteration mapping using ASTER data–case study: the northwestern part of the Kerman Cenozoic Magmatic Arc, Iran”. International Journal of Mining and Geo-Engineering, 54(1): 45-50.
  20. Balabantaray, S. K., Aravindan, S., Baunthiyal, T., and Ravi, R. (2022). “Processing of Multispectral ASTER Data to Delineate Bauxite Abundant Zones and its Geochemical Characterisation Deposited over Deccan Traps of Central India in Mainpat Plateau, Surguja District, Chhattisgarh”. Journal of the Geological Society of India, 98(9): 1301-1307.
  21. Son, Y. S., Lee, G., Lee, B. H., Kim, N., Koh, S. M., Kim, K. E., and Cho, S. J. (2022). “Application of ASTER Data for Differentiating Carbonate Minerals and Evaluating MgO Content of Magnesite in the Jiao-Liao-Ji Belt, North China Craton”. Remote Sensing, 14(1): 181.
  22. Mirsepahvand, F., Jafari, M. R., Afzal, P., and Arian, M. A. (2022). “Identification of Alteration Zones using ASTER Data for Metallic Mineralization in Ahar region, NW Iran”. Journal of Mining and Environment, 13(1): 309-324.
  23. Errami, M., Algouti, A., Algouti, A., Farah, A., and Agli, S. (2023). “Utilization of ASTER data in lithological and lineament mapping of the southern flank of the Central High Atlas in Morocco”. Geologos, 29(1): 1-20.
  24. Habashi, J., Oskouei, M. M., and Jamshid Moghadam, H. (2024). “Classification of ASTER Data by Neural Network to Mapping Alterations Related to Copper and Iron Mineralization in Birjand”. Journal of Mining and Environment, 15(2): 649-665.
  25. Geological map 1:100,000 of Khusf, Geological Survey and Mineral Exploration of Iran.
  26. Yamaguchi, Y. (1999). “ASTER instrument characterization and operation scenario”. Advances in Space Research, 23(8): 1415-1424.
  27. Ninomiya, Y., Fu, B., and Cudahy, T. J. (2005). “Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared ‘radiance-at-sensor’ data”. Remote Sensing of Environment, 99(1-2): 127-139.
  28. Abrams, M., and Yamaguchi, Y. (2019). “Twenty years of ASTER contributions to lithologic mapping and mineral exploration”. Remote Sensing, 11(11): 1394.
  29. Moghadam, H. J., Oskouei, M. M., and Nouri, T. (2020). “Unmixing of hyperspectral data for mineral detection using a hybrid method, Sar Chah-e Shur, Iran”. Arabian Journal of Geosciences, 13: 1-17.
  30. ITT Visual Information Solutions, “Atmospheric Correction Module: QUAC and FLAASH User’s Guide”. Version 4.7, August, 2009 Edition.
  31. Hecker, C., van Ruitenbeek, F. J., van der Werff, H. M., Bakker, W. H., Hewson, R. D., and van der Meer, F. D. (2019). “Spectral absorption feature analysis for finding ore: A tutorial on using the method in geological remote sensing”. IEEE Geoscience and Remote Sensing Magazine, 7(2): 51-71.
  32. Green, A. A., and Craig, M. D. (1985). “Analysis of aircraft spectrometer data with logarithmic residuals”. In: JPL Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop, Pasadena, 8-10 April, 111-119.
  33. Riaño, D., Chuvieco, E., Salas, J., and Aguado, I. (2003). “Assessment of Different Topographic Corrections in Landsat-TM Data for Mapping Vegetation Types”. IEEE Transactions on Geoscience and Remote Sensing, 41(5): 1056-1061.
  34. Feng, J., Rivard, B., and Sanchez-Azofeifa, A. (2003). “The topographic normalization of hyperspectral data:implications for the selection of spectral end members and lithologic mapping”. Remote Sensing of Environment, 85: 221-231.
  35. Singh, S., Kaur, R., Goraya, A., Singh, A., and Singh, A. (2012, January). “Review of Different Topographic Correction Techniques for Satellite Imagery”. In: National Conference Recent Advances in Communication & Electronics (RACE-2012), Vol. 1, 27-28.
  36. Rowan, L. C., and Mars, J. C. (2003). “Lithologic mapping in the Mountain Pass area, California using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data”. Remote Sensing of Environment, 84(3): 350-366.
  37. Volesky, J. C., Stern, R. J., and Johnson, P. R. (2003). “Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies”. Precambrian Research, 123: 235-247.
  38. Crosta, A., and Moore, J. (1989). “Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in S W Minais Gerais S tate, Brazil:a prospecting case history in Greenstone belt terrain”. In: Proceedings of the 7th ERIM Thematic Conference: Remote Sensing for Exploration Geology, 1173-1187.
  39. Aydal, D., Arda1, E., and Dumanlilar, Ö. (2007). “Application of the Crosta technique for alteration mapping of granitoidic rocks using ETM+ data: case study from eastern Tauride belt (SE Turkey)”. International Journal of Remote Sensing, 28(17): 3895-3913.