Comparison of NaOL Adsorption on the Hematite 001 Surface with Water Molecules Adsorption on the Hydrophilic Hematite Surface Using Molecular Dynamics Simulation

Document Type : Research - Paper

Authors

1 Ph.D Student, Dept. of Mining Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran

2 Professor, Dept. of Mining Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran

3 Assistant Professor, Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran

Abstract

This article reports on a molecular dynamics simulation-based research that investigates the adsorption of sodium oleate (NaOl) on the of the highly hydrophilic 001 hematite surface in froth flotation and its effect on the mineral's wettability properties. The molecular dynamics simulation was conducted using LAMMPS. The wettability properties were evaluated by comparing the thermodynamic characteristics of two surfaces, one net and the other coated by the collector. Surface energy, center of mass location of water molecules, water density in contact layers and adjacent to the surface, and fluid permeability coefficient were used as indicators of wettability. The simulation results showed that the 001 surface of hematite is highly hydrophilic due to strong electrostatic interactions and feasible hydrogen bond formation sites. However, with the adsorption of the collector, the surface became hydrophobic due to a sharp decrease in surface tension, reduction of intermolecular interactions, and loss of hydrogen bond formation sites. The results confirm that the selective absorption of the collector on the hematite surface enables its floatability.

Keywords

Main Subjects


  1. Bulatovic, S. M. (2009). “Handbook of Flotation Reagents: Chemistry, Theory and Practice: Flotation of Gold, Pgm and Oxide Minerals”. Elsevier Science. DOI: https://doi.org/10.1016/C2009-0-17331-2.
  2. Xie, R., Zhu, Y., Liu, J., and Li, Y. (2021). “The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz”. Separation and Purification Technology, 264: 118445.
  3. Silva, K., Filippov, L. O., Piçarra, A., Flilippova, I. V., Lima, N., Skliar, A., Faustino, L., and Filho, L. L. (2021). “New perspectives in iron ore flotation: Use of collector reagents without depressants in reverse cationic flotation of quartz”. Minerals Engineering, 170: 107004.
  4. Huang, Z., Shuai, S., Wang, H., Liu, R., Zhang, S., Cheng, C., Hu, Y., Yu, X., He, G., and Fu, W. (2022). “Froth flotation separation of lepidolite ore using a new Gemini surfactant as the flotation collector”. Separation and Purification Technology, 282: 119122.
  5. Li, H., Zheng, H., Chen, Q., Kasomo, R. M., Leng, J., Weng, X., Song, S., Xiao, L., and Tian, C. (2020). “Flotation separation of rutile from almandine using octadecyl amine polyoxyethylene ether as collector”. Physicochemical Problems of Mineral Processing, 56(4): 653-664.
  6. Xu, L., Jiao, F., Jia, W., Pan, Z., Hu, C., and Qin, W. (2020). “Selective flotation separation of spodumene from feldspar using mixed anionic/nonionic collector”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 594: 124605.
  7. جوانشیر، س.، مسینایی، م.، توکلی، م.؛ 1396؛ "سولفورزدایی کنسانتره سنگ آهن سنگان به روش فلوتاسیون". نشریه مهندسی منابع معدنی، دوره سوم، شماره 3، ص 86-77.
  8. حق محمدی پسند، ر.، وظیفه مهربانی، ج.، پورقهرمانی، پ.؛ 1398؛ "بررسی کاهش میزان گوگرد کنسانتره منتیتی کارخانه تغلیظ سنگ آهن همدان". نشریه مهندسی منابع معدنی، دوره پنجم، شماره 4، ص 110-95.
  9. Jin, J., Gao, H., Chen, X., and Peng, Y. (2016). “The separation of kyanite from quartz by flotation at acidic pH”. Minerals Engineering, 92: 221-228.
  10. Fuerstenau, D. (2005). “Zeta potentials in the flotation of oxide and silicate minerals”. Advances in Colloid and Interface Science, 114: 9-26.
  11. Fuerstenau, M. C., Jameson, G. J., and Yoon, R.-H. (2007). “Froth flotation: a century of innovation”. Society for Mining, Metallurgy, and Exploration, Inc., pp. 891.
  12. Nakhaei, F., and Irannajad, M. (2018). “Reagents types in flotation of iron oxide minerals: A review”. Mineral Processing and Extractive Metallurgy Review, 39(2): 89-124.
  13. مهرآبادی عسگری، م.، کارآموزیان، م.؛ 1397؛ "بررسی پارامترهای موثر بر فلوتاسیون کانی کربناته سرب در مقیاس آزمایشگاهی". نشریه مهندسی منابع معدنی، دوره چهارم، شماره 3، ص 103-87.
  14. شجاع، ف.، عبداللهی، م.، اسکانلو، ا.؛ 1396؛ "بررسی امکان کاهش گوگرد کانسنگ آهن معدن سورک". نشریه مهندسی منابع معدنی، دوره دوم، شماره 4، ص 74-67.
  15. Rao, K. H., Kundu, T., and Parker, S. (2012). “Molecular Modeling of Mineral Surface Reactions in Flotation”. In: Molecular Modeling for the Design of Novel Performance Chemicals and Materials, Rai, B. (Ed.), CRC Press, Chapter 3, 65-105.
  16. Rogers, D. W. (2003). “Computational Chemistry using the PC”. John Wiley & Sons.
  17. Hénin, J., Lelièvre, T., Shirts, M. R., Valsson, O., and Delemotte, L. (2022). “Enhanced sampling methods for molecular dynamics simulations”. Living Journal of Computational Molecular Science, 4(1): 1583.
  18. Begušić, T., Tao, X., Blake, G. A., and Miller, T. F. (2022). “Equilibrium–nonequilibrium ring-polymer molecular dynamics for nonlinear spectroscopy”. The Journal of Chemical Physics, 156(13): 131102.
  19. Jensen, F. (2017). “Introduction to computational chemistry”. John wiley & Sons.
  20. Hollingsworth, S. A., and Dror, R. O. (2018). “Molecular dynamics simulation for all”. Neuron, 99(6): 1129-1143.
  21. Vidyadhar, A., Kumari, N., and Bhagat, R. (2012). “Flotation of quartz and hematite: adsorption mechanism of mixed cationic/anionic collector systems”. XXVI International Mineral Processing Congress(IMPC) 2012 Proceedings, New Delhi, India, 24-28 September.
  22. Sharma, S., Kumar, P., and Chandra, R. (2019). “Applications of BIOVIA materials studio, LAMMPS, and GROMACS in various fields of science and engineering”. Molecular Dynamics Simulation of Nanocomposites Using BIOVIA Materials Studio, Lammps and Gromacs, 2019: 329-341.
  23. Han, Y., Jiang, D., Zhang, J., Li, W., Gan, Z., and Gu, J. (2016). “Development, applications and challenges of ReaxFF reactive force field in molecular simulations”. Frontiers of Chemical Science and Engineering, 10: 16-38.
  24. Maghfiroh, C., Arkundato, A., and Maulina, W. (2020). “Parameters (σ, ε) of Lennard-Jones for Fe, Ni, Pb for potential and cr based on melting point values using the molecular dynamics method of the lammps program”. In: Journal of Physics: Conference Series, IOP Publishing.
  25. Liu, B., Dai, M., Ali, I., Li, S., Sun, L., Peng, C., and Naz, I. (2021). “Molecular insights on the influence of temperature and metal ions on the hydration of kaolinite (001) surface”. Molecular Simulation, 47(12): 1029-1036.
  26. Pan, B., Yin, X., and Iglauer, S. (2020). “A review on clay wettability: From experimental investigations to molecular dynamics simulations”. Advances in Colloid and Interface Science, 285: 102266.
  27. Yuan, Y., and Lee, T. R. (2013). “Contact angle and wetting properties”. Surface Science Techniques, 2013: 3-34.
  28. Wang, J., Kalinichev, A. G., and Kirkpatrick, R.J. (2006). “Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study”. Geochimica et Cosmochimica Acta, 70(3): 562-582.
  29. Mabudi, A., Noaparast, M., Gharabaghi, M., and Vasquez, V. R. (2019). “Polystyrene nanoparticles as a flotation collector: A molecular dynamics study”. Journal of Molecular Liquids, 275: 554-566.
  30. Wongkoblap, A., and Do, D. D. (2008). “Adsorption of polar and nonpolar fluids in finite-length carbon slit pore: a Monte Carlo simulation study”. Chemical Engineering Communications, 195(11): 1382-1395.
  31. Foroutan, M., Fatemi, S. M., Esmaeilian, F., Fadaei Naeini, V., and Baniassadi, M. (2018). “Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient”. Physics of Fluids, 30(5): 052101.
  32. Al-Busaidi, I. K., Al-Maamari, R. S., Karimi, M., Naser, J. (2019). “Effect of different polar organic compounds on wettability of calcite surfaces”. Journal of Petroleum Science and Engineering, 180: 569-583.
  33. Shi, K.-Y., Chen, J.-Q., Pang, X.-Q., Jiang, F.-J., Hui, S.-S., Zhao, Z.-C., Chen, D., Cong, Q., Wang, T., Xiao,  H.-Y., Yang, X.-B., and Wang, Y.-Y. (2023). “Wettability of different clay mineral surfaces in shale: Implications from molecular dynamics simulations”. Petroleum Science, 20(2): 689-704.