Comparison of Available Water Resources in terms of Formation of Mineral Deposition for Injection into a Petroleum Reservoir

Document Type : Research - Paper

Authors

1 Ph.D Student, Dept. of Petroleum Engineering, Faculty of Engineering, Kish International Campus, University of Tehran, Tehran, Iran

2 Professor, Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran

3 Ph.D, National Iranian Oil Company, Shiraz, Iran

4 Ph.D, Dept. of Earth, Energy and Environment, University of Calgary, Calgary, Canada

Abstract

Recently, water injection has been widely studied as one of the most popular enhanced/improved oil recovery methods. Most of the studies focus on low salinity and seawater injection, emphasizing the quality of the injection fluid. In addition, receiving the required quantity of injection water and high-quality injection fluid is crucial. Produced water with oil and urban wastewater can be regarded as appropriate resources for water injection projects to mitigate the environmental concerns and the cost of water treatment. This study examines several water resources suggested for injection into an oil reservoir near the Persian Gulf to find the optimal choice. The studied resources are low-salinity water, seawater (from the Persian Gulf), produced water, and urban wastewater. Injection fluid quality, compatibility with formation brine, scale formation, and usability were the primary factors considered when selecting the optimal water resource. Accordingly, geo-chemical software OLI Scale Chem was used for compatibility check and estimation of scale type and amount. As a result, the least amount of scale formed after urban wastewater injection, whereas seawater was the most incompatible water source. It should be emphasized that various non-technical factors, such as the climate of the region, the water transmission route and associated costs, economic conditions of the country, environmental concerns, and the priority of wastewater usage may significantly impact resource selection.

Keywords

Main Subjects


  1. Tetteh, J. T., Rankey, E., and Barati, R. (2017). “Low salinity waterflooding effect: Crude oil/brine interactions as a recovery mechanism in carbonate rocks”. OTC Brasil, Rio de Janeiro, Brazil, October. DOI: 10.4043/28023-ms.
  2. Norwegian Petroleum Directorate (2020). “Water injection”. Norwegian Petroleum Directorate, https://www.npd.no/en/facts/production/improved-oil-recovery-ior/water/#:~:text=In 2019%2C 41 fields on.
  3. Webb, K. J., Black, C. J. J., and Members, S. P. E. (2003). “Low Salinity Oil Recovery – Log-Inject-Log”. In: SPE 13th Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April. DOI: 10.2118/89379-MS.
  4. Katende, A., and Sagala, F. (2019). “A critical review of low salinity water flooding : Mechanism , laboratory and field application”. Journal of Molecular Liquids, 278: 627-649. DOI: 10.1016/j.molliq.2019.01.037.
  5. Bernard, G. G. (1967). “Effect of Floodwater Salinity on Recovery Of Oil from Cores Containing Clays”. In: SPE California Regional Meeting, Los Angeles, California, October. DOI: 10.2118/1725-ms.
  6. Tetteh, J. T., Brady, P. V., and Barati Ghahfarokhi, R. (2020). “Review of low salinity waterflooding in carbonate rocks: mechanisms, investigation techniques, and future directions”. Advances in Colloid and Interface Science, 284: 102253. DOI: 10.1016/j.cis.2020.102253.
  7. Peng, S., Shevchenko, P., and Ko, L. T. (2023). “Shale Wettability: Untangling the Elusive Property with an Integrated Imbibition and Imaging Technique and a New Hypothetical Theory”. SPE Reservoir Evaluation & Engineering, 26(01): 40-50. DOI: 10.2118/212276-PA.
  8. Ligthelm, D., Gronsveld, J., Hofman, J., Brussee, N., Marcelis, F., and Van Der Linde, H. (2009). “Novel waterflooding strategy by manipulation of injection brine composition (SPE-119835)”. In: EUROPEC/EAGE Conference and Exhibition, Amsterdam, The Netherlands, June. DOI: https://doi.org/10.2118/119835-MS.
  9. Sohal, M. A., Thyne, G., and Søgaard, E. G. (2016). “Review of Recovery Mechanisms of Ionically Modified Waterflood in Carbonate Reservoirs”. Energy and Fuels, 30(3): 1904-1914. DOI: 10.1021/acs.energyfuels.5b02749.
  10. Yousef, A. A., Al-Saleh, S., Al-Kaabi, A., and Al-Jawfi, M. (2011). “Laboratory investigation of the impact of injection-water salinity and ionic content on oil recovery from carbonate reservoirs”. SPE Reservoir Evaluation and Engineering, 14(5): 578-593. DOI: 10.2118/137634-PA.
  11. Romanuka, J., Hofman, J. P., Ligthelm, D. J., Suijkerbuijk, B. M. J. M., Marcelis, A. H. M., and Oedai, S., Brussee, N. J., van der Linde, A. , Aksulu, H. , and Austad, T. (2012). “Low salinity EOR in carbonates”. In: SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, April. DOI: 10.2118/153869-ms.
  12. Al-Harrasi, A. S., Al-Maamari, R. S., and Masalmeh, S. (2012). “Laboratory investigation of low salinity waterflooding for carbonate reservoirs”. In: Abu Dhabi International Petroleum Conference and Exhibition, Abu Dhabi, UAE, November. DOI: 10.2118/161468-ms.
  13. Chandrasekhar, S., and Mohanty, K. K. (2013). “Wettability alteration with brine composition in high temperature carbonate reservoirs”. In: SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, September. DOI: 10.2118/166280-ms.
  14. Alameri, W., Teklu, T. W., Graves, R. M., Kazemi, H., and AlSumaiti, A. M. (2014). “Wettability alteration during low-salinity water-flooding in carbonate reservoir cores”. In: SPE Asia Pacific Oil & Gas Conference and Exhibition, Adelaide, Australia, October. DOI: 10.2118/171529-ms.
  15. Nasralla, R. A., Sergienko, E., Van Der Linde, H. A., Brussee, N. J., Mahani, H., Suijkerbuijk, B. M. J. M., Al-Qarshubi, I. S., and Masalmeh, S. K. (2014). “Demonstrating the potential of low-salinity waterflood to improve oil recovery in carbonate reservoirs by qualitative coreflood”. In: Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, November. DOI: 10.2118/172010-ms.
  16. Austad, T., Shariatpanahi, S. F., Strand, S., Aksulu, H., and Puntervold, T. (2015). “Low Salinity EOR Effects in Limestone Reservoir Cores Containing Anhydrite: A Discussion of the Chemical Mechanism”. Energy and Fuels, 29(11): 6903-6911. DOI: 10.1021/acs.energyfuels.5b01099.
  17. Wang, X., Liu, W., Shi, L., Zou, Z., Ye, Z., Wang, H., and Han, L. (2021). “A comprehensive insight on the impact of individual ions on Engineered Waterflood: With already strongly water-wet sandstone”. Journal of Petroleum Science and Engineering, 207: 109153. DOI: 10.1016/j.petrol.2021.109153.
  18. Reginato, L. F., Pedroni, L. G., Martins Compan, A. L., Skinner, R., and Sampaio, M. A. (2021). “Optimization of ionic concentrations in engineered water injection in carbonate reservoir through ANN and FGA”. Oil and Gas Science and Technology, 76(13): 1-14. DOI: 10.2516/ogst/2020094.
  19. Mahani, H., Keya, A. L., Berg, S., Bartels, W. B., Nasralla, R., and Rossen, W. R. (2015). “Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates”. Energy and Fuels, 29(3): 1352-1367. DOI: 10.1021/ef5023847.
  20. Derkani, M. H., Fletcher, A. J., Abdallah, W., Sauerer, B., Anderson, J., and Zhang, Z. J. (2018). “Low salinity waterflooding in carbonate reservoirs: Review of interfacial mechanisms”. Colloids and Interfaces, 2(2): 20. DOI: 10.3390/colloids2020020.
  21. Rahimi, A., Honarvar, B., and Safari, M. (2020). “The role of salinity and aging time on carbonate reservoir in low salinity seawater and smart seawater flooding”. Journal of Petroleum Science and Engineering, 187: 106739. DOI: 10.1016/j.petrol.2019.106739.
  22. Talebi, S., Riahi, S., and Rostami, B. (2022). “The Effect of Blending Polymeric and Phosphonate Scale Inhibitors on Fluid/Fluid and Rock/Fluid Interactions: A Comprehensive Experimental and Theoretical Study”. SPE Journal, 27(2022): 3611-3629. DOI: 10.2118/210583-PA.
  23. Mahmoud, M., Elkatatny, S., and Abdelgawad, K. Z. (2017). “Using high- and low-salinity seawater injection to maintain the oil reservoir pressure without damage”. Journal of Petroleum Exploration and Production Technology, 7(2): 589-596. DOI: 10.1007/s13202-016-0279-x.
  24. Ghosh, B., Sun, L., and Thomas, N. C. (2020). “Compatibility evaluation of modified seawater for EOR in carbonate reservoirs through the introduction of polyphosphate compound”. Petroleum Science, 17(2): 393-408. DOI: 10.1007/s12182-019-00380-6.
  25. Song, J., Wang, Q., Shaik, I., Puerto, M., Bikkina, P., Aichele, C., Biswal, S. L., and Hirasaki, G. J. (2020). “Effect of salinity, Mg2+ and SO42− on “smart water”-induced carbonate wettability alteration in a model oil system”. Journal of Colloid and Interface Science, 563: 145-155. DOI: 10.1016/j.jcis.2019.12.040.
  26. Hadia, N. J., Chaudhari, L. S., Mitra, S. K., Vinjamur, M., and Singh, R. (2008). “Effect of scaling parameters on waterflood performance with horizontal and vertical wells”. Energy and Fuels, 22(1): 402-409. DOI: 10.1021/ef070097b.
  27. Kokal, S., and Al-Kaabi, A. (2010). “Enhanced oil recovery: challenges and opportunities”. Global Energy Solutions, 2010: 64-69.
  28. Narain-ford, D. M., Bartholomeus, R. P., Dekker, S. C., and Van Wezel, A. P. (2020). “Natural Purification Through Soils : Risks and Opportunities of Sewage Ef fl uent Reuse in Sub-surface Irrigation”. Reviews of Environmental Contamination and Toxicology, 250: 85-117. DOI: https://doi.org/10.1007/398_2020_49.
  29. Scheierling, S. M., Bartone, C. R., Mara, D. D., and Drechsel, P. (2011). “Towards an agenda for improving wastewater use in agriculture”. Water International, 36(4): 420-440. DOI: 10.1080/02508060.2011.594527.
  30. Parsons, S. A., and Smith, J. A. (2008). “Phosphorus removal and recovery from municipal wastewaters”. Elements, 4(2): 109-112. DOI: 10.2113/GSELEMENTS.4.2.109.
  31. Pahl-wostl, C. (2007). “Transitions towards adaptive management of water facing climate and global change”. Water Resour Manage, 21: 49-62. DOI: 10.1007/s11269-006-9040-4.
  32. Kesari, K. K., Soni, R., Mohammad, Q., and Jamal, S. (2021). “Wastewater Treatment and Reuse : a Review of its Applications and Health Implications”. Water Air Soil Pollut, 2021: 208-232. DOI: 10.1007/s11270-021-05154-8.
  33. Sato, T., Qadir, M., Yamamoto, S., Endo, T., and Zahoor, A. (2013). “Global, regional, and country level need for data on wastewater generation, treatment, and use”. Agricultural Water Management, 130: 1-13. DOI: 10.1016/j.agwat.2013.08.007.
  34. Qureshi, A. S. (2020). “Challenges and Prospects of Using Treated Wastewater to Manage Water Scarcity Crises in the Gulf Cooperation Council (GCC) Countries”. Water, 2020: 1-16. DOI: 10.3390/w12071971.
  35. Liang, Y., Ning, Y., Liao, L., and Yuan, B. (2018). “Special Focus on Produced Water in Oil and Gas Fields: Origin, Management, and Reinjection Practice. Elsevier Inc”. Formation Damage during Improved Oil Recovery, 515-586. DOI: 10.1016/B978-0-12-813782-6.00014-2.
  36. Jiménez, S., Micó, M. M., Arnaldos, M., Medina, F., and Contreras, S. (2018). “State of the art of produced water treatment”. Chemosphere, 192: 186-208. DOI: 10.1016/j.chemosphere.2017.10.139.
  37. Adeniyi, A. T., and Ejim, C. P. (2021). “Analyzing the Influence of Salinity on Produced Water Re-Injection”. In: SPE Nigeria Annual International Conference and Exhibition: D031S013R003. DOI: 10.2118/207157-MS.
  38. Dores, R., Hussain, A., Katebah, M., and Adham, S. (2012). “Using advanced water treatment technologies to treat produced water from the petroleum industry”. In: SPE International Production and Operations Conference & Exhibition, Doha, Qatar, May, 914-924. DOI: 10.2118/157108-ms.
  39. Ayirala, S. C., Saleh, S. H., and Yousef, A. A. (2017). “Microscopic scale interactions of water ions at crude oil/water interface and their impact on oil mobilization in advanced water flooding”. Journal of Petroleum Science and Engineering, 163: 640-649. DOI: 10.1016/j.petrol.2017.09.054.
  40. Bedrikovetsky, P., Mackay, E., Monteiro, R. P., Patricio, F., and Rosário, F. F. (2006). “Injectivity impairment due to sulfate scaling during PWRI: Analytical model”. In: SPE International Oilfield Scale Symposium, Aberdeen, UK, 31 May-1 June, 184-198. DOI: 10.2523/100512-ms.
  41. Moosavi, S. R., Rayhani, M., Malayeri, M. R., and Riazi, M. (2019). “Impact of monovalent and divalent cationic and anionic ions on wettability alteration of dolomite rocks”. Journal of Molecular Liquids, 281: 9-19. DOI: 10.1016/j.molliq.2019.02.078.
  42. Bader, M. S. H. (2007). “Seawater versus produced water in oil-fields water injection operations”. Desalination, 208(1-3): 159-168. DOI: 10.1016/j.desal.2006.05.024.
  43. Alquwaizany, A., Hussain, G., and Al-Zarah, A. I. (2021). “Changes in Physico-Chemical Composition of Wastewater by Growing Phragmites ausrtalis and Typha in an Arid Environment in Saudi Arabia”. Environmental Science and Pollution Research, 1-11. DOI: 10.21203/rs.3.rs-365947/v1.
  44. Ellis, T. G. (1983). “Chemistry of wastewater treatment”. Environmental and Ecological Chemistry, Vol. II, Chemistry of Wastewater II.
  45. Warwick, C., Guerreiro, A., and Soares, A. (2013). “Sensing and analysis of soluble phosphates in environmental samples: A review”. Biosensors and Bioelectronics, 41(1): 1-11. DOI: 10.1016/j.bios.2012.07.012.
  46. Zimin, S. V., Sabanchin, I. V., Krasnov, I. A., Butorin, O. O., Stukan, M. R., Ivanov, E. N., Rebrikova, A. T., Denisenko, A. S., Piskarev, V. I., and Laptev, V. D. (2020). “Inorganic salt deposition under in situ conditions in Eastern Siberian reservoirs (Russian)”. Neftyanoe Khozyaystvo - Oil Industry, 2020(09): 44-49. DOI: 10.24887/0028-2448-2020-9-44-49.
  47. Ghalib, H. B., and Almallah, I. A. R. (2017). “Scaling simulation resulting from mixing predicted model between Mishrif formation water and different waters injection in Basrah oil field, southern Iraq”. Modeling Earth Systems and Environment, 3(4): 1557-1569. DOI: 10.1007/s40808-017-0384-y.
  48. Hajj, H. El., Pal, O., and Zoghbi, B. (2015). “SPE-178002-MS Compositional Analysis and Treatment of Oilfield Scales”. In: SPE Saudi Arabia Section Annual Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, April. DOI: 10.2118/178002-MS.
  49. Salikhov, R. M., Chertovskih, E. O., Gilmutdinov, B. R., Lebedeva, I. P., Kostyuk, I. I., Paraschenko, M. K., Uryadnov, A. A., and Kolesnikova, A. R. (2020). “Special aspects of chemical reagents use under high mineralization of produced waters (Russian)”. Neftyanoe Khozyaystvo - Oil Industry, 2020(09): 59-62. DOI: 10.24887/0028-2448-2020-9-59-62.
  50. Hu, M., Steefel, C. I., and Rutqvist, J. (2021). “Microscale Mechanical-Chemical Modeling of Granular Salt: Insights for Creep”. Journal of Geophysical Research : Solid Earth, 126(12): 1-20. DOI: 10.1029/2021JB023112.
  51. Kleinitz, W., and Dietzsch, G., and Ko, M. (2003). “Halite scale formation in gas-producing wells”. Chemical Engineering Research and Design, 81(3): 352-358. DOI: 10.1205/02638760360596900.
  52. Kamalipour, M., Mousavi Dehghani, S. A., Naseri, A., and Abbasi, S. (2018). “Distinguishing anhydrate and gypsum scale in mixing incompatible surface and ground waters during water injection process”. Iranian Journal of Chemistry and Chemical Engineering, 37(1): 231-240. DOI: 10.30492/IJCCE.2018.26024.
  53. Mostafavi, S. A., Riahi, S., Mavaddat, M., and Bigdeli, A. (2021). “Best Practices-design for Scale Reduction During Produced Water Reinjection (PWRI)”. 82nd EAGE Annual Conference & Exhibition, 2021: 1-5. DOI: 10.3997/2214-4609.202113312.
  54. Shabani, A., Kalantariasl, A., Parvazdavani, M., and Abbasi, S. (2019). “Geochemical and hydrodynamic modeling of permeability impairment due to composite scale formation in porous media”. Journal of Petroleum Science and Engineering, 176: 1071-1081. DOI: 10.1016/j.petrol.2019.01.088.
  55. Al-Samhan, M., Alanezi, K., Al-Fadhli, J., Al-Attar, F., Mukadam, S., and George, J. (2020). “Evaluating scale deposition and scale tendency of effluent water mix with seawater for compatible injection water”. Journal of Petroleum Exploration and Production Technology, 10(5): 2105-2111. DOI: 10.1007/s13202-020-00849-w.