A Review on Bioflotation and Bioflocculation of Galena

Document Type : Research - Paper

Authors

1 M.Sc, Dept. of Mining Engineering, Isfahan University of Technology, Isfahan, Iran

2 Assistant Professor, Dept. of Mining Engineering, Isfahan University of Technology, Isfahan, Iran

3 Associate Professor, Dept. of Mining Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

In recent decades, the application of microorganisms and their products for the bioseparation of minerals, bioflotation, and bioflocculation, has been extensively recognized by researchers and industry. Considering several benefits of the bioseparation, in the current paper, a detailed review has been conducted on the bioseparation of galena from its most common accompanying minerals i.e. sphalerite, chalcopyrite, and pyrite using microorganisms and their extracellular products. Based on the findings, the bacterial cells of the Thiobacillus species have a good ability to depress and selectively flocculate galena, but the cells of the Polymyxa species have a lower ability. Therefore, they depress and flocculate most of the sulfide minerals present in the pulp. In addition, the adaptation of bacteria, especially polymyxa  species with galena and other minerals will increase extracellular secretions of protein or polysaccharides. Adapted Bacillus subtilis and Bacillus megatrium can separate galena. Due to the hydrophobic nature of extracellular proteins, their less absorption on the surface of galena compared to sphalerite, causes the second mineral to be floated and the galena to be depressed. On the other hand, adaptation leads to more protein secretion in the presence of galena compared to pyrite, which will cause galena to float and the second mineral to be depressed. Also, it can be said that the tendency of extracellular polysaccharides to adsorb on galena and the tendency of extracellular proteins to adsorb on sphalerite causes that when the mixture of these two minerals comes into contact with bacterial EPS, galena is usually depressed or flocculated and sphalerite floats to some extent.

Keywords

Main Subjects


  1. رضائی، ب.؛ 1378؛ "فلوتاسیون". دانشگاه هرمزگان، 425 صفحه.
  2. Wills, B. A., and Finch, J. (2015). “Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery”. Butterworth-Heinemann, 265-380.
  3. Hosseini, M. R., Bahrami, A., Ahmadi, A., Azizinia, M. R., and Azimi, E. (2019). “Application of differential bio-flocculation in the removal of hematite and goethite from kaolin and quartz”. Chemical Engineering Communications, 206(6): 815-827.
  4. Rao, K. H., Vilinska, A., and Chernyshova, I. (2010). “Minerals bioprocessing: R & D needs in mineral biobeneficiation”. Hydrometallurgy, 104(3-4): 465-470.
  5. Ashkavandi, R. A., Azimi, E., and Hosseini, M. R. (2022). “Bacillus licheniformis a potential bio-collector for Barite-Quartz selective separation”. Minerals Engineering, 175: 107285.
  6. Sanwani, E., Chaerun, S. K., Husni, H., Pamungkas, T., and Rasyid, M. A. (2021). “A biosurfactant-producing and iron-oxidizing mixotrophic bacterium as an environmentally friendly reagent for eco-green flotation of Indonesian complex Pb-Zn ores”. Minerals Engineering, 170: 106824.
  7. Singh, A., Van Hamme, J. D., and Ward, O. P. (2007). “Surfactants in microbiology and biotechnology: Part 2. Application aspects”. Biotechnology Advances, 25(1): 99-121.
  8. Chipise, L., Ndlovu, S., and Shemi, A. (2021). “Towards the Biobeneficiation of PGMs: Reviewing the Opportunities”. Minerals, 12(1): 57.
  9. Donati, E. R., and Sand, W. (2007). “Microbial processing of metal sulfides”. Springer, 35-58.
  10. Ghashoghchi, R. A., Hosseini, M. R., and Ahmadi, A. (2017). “Effects of microbial cells and their associated extracellular polymeric substances on the bio-flocculation of kaolin and quartz”. Applied Clay Science, 138: 81-88.
  11. وقار، ر.، اولیازاده، م.، وقار، م.؛ 1379؛ "فناوری میکروبی در متالورژی". دانشگاه صنایع و معادن ایران، 372 صفحه.
  12. حسینی، س.؛ 1397؛ "زیستفناوری در فرآوری مواد معدنی". جهاد دانشگاهی واحد اصفهان.
  13. Wahyuningsih, T., Chaerun, S. K., and Sanwani, E. (2020). “Characterization of interaction of biosurfactant-producing bacteria with pyrite minerals as an alternative to depressant reagents in the bioflotation process of copper sulfide minerals that are more environmentally friendly”. In: AIP Conference Proceedings, AIP Publishing LLC.
  14. Kinnunen, P., Miettinen, H., and Bomberg, M. (2020). “Review of potential microbial effects on flotation. Minerals”. 10(6): 533.
  15. Rao, K. H., and Subramanian, S. (2007). “Bioflotation and bioflocculation of relevance to minerals bioprocessing, in Microbial processing of metal sulfides”. Springer, 267-286.
  16. Koca, S., Aksoy, D., Ozdemir, S., Aytar Çelik, P., Çabuk, A., and Koca, H. (2022). “Surfactin as an alternative microbial collector to oleate in magnesite-quartz selective flotation”. Separation Science and Technology, 58: 1-12.
  17. Rea, S. M., Boxall, N. J., Dwyer, R. B., and Bruckard, W. J. (2022). “Application of biotechnology in iron ore beneficiation, in Iron ore”. Elsevier, 457-486. DOI: https://doi.org/10.1016/B978-0-12-820226-5.00002-1.
  18. Singleton, P. (2004). “Bacteria in biology, biotechnology and medicine (No. Ed. 6)”. John Wiley & Sons, pp. 526.
  19. Rea, S., McSweeney, N., Dwyer, R., and Bruckard, W. (2015). “Application of biotechnology in iron ore beneficiation, in Iron Ore”. Elsevier, 373-391. DOI: https://doi.org/10.1016/B978-1-78242-156-6.00013-7.
  20. Chandraprabha, M., and Natarajan, K. (2009). “Microbially induced mineral beneficiation”. Mineral Processing and Extractive Metallurgy Review, 31(1): 1-29.
  21. Mozes, N. (1991). “Microbial cell surface analysis”. VCH Publishers, pp. 368.
  22. Harneit, K., Göksel, A., Kock, D., Klock, J.-H., Gehrke, T., and Sand, W. (2006). “Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans”. Hydrometallurgy, 83(1-4): 245-254.
  23. Sand, W., Florian, B. M., and Noël, N. (2009). “Mechanisms of bioleaching and the visualization of these by combined AFM & EFM”. Advanced Materials Research, 71-73: 297-302.
  24. Sanwani, E., Chaerun, S. K., Husni, H., and Rasyid, M. A. (2021). “Surface Modification of Galena Concentrate, Sphalerite Concentrate, and Silica by the Bacterium Citrobacter sp. and Its Application to Green Flotation of Complex Pb–Zn Ores”. Journal of Sustainable Metallurgy, 7(3): 1265-1279.
  25. Dunne, W. M. (2002). “Bacterial adhesion: seen any good biofilms lately?”. Clinical Microbiology Reviews, 15(2): 155-166.
  26. Yee, N., Fein, J. B., and Daughney, C. J. (2000). “Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption”. Geochimica et Cosmochimica Acta, 64(4): 609-617.
  27. Hermansson, M. (1999). “The DLVO theory in microbial adhesion”. Colloids Surfaces B: Biointerfaces, 14(1-4): 105-119.
  28. Consuegra, G. L., Kutschke, S., Rudolph, M., and Pollmann, K. (2020). “Halophilic bacteria as potential pyrite bio-depressants in Cu-Mo bioflotation”. Minerals Engineering, 145: 106062.
  29. Patra, P., and Natarajan, K. (2008). “Microbially-induced separation of chalcopyrite and galena”. Minerals Engineering, 21(10): 691-698.
  30. Bosecker, K. (1997). “Bioleaching: metal solubilization by microorganisms”. FEMS Microbiology Reviews, 20(3‐4): 591-604.
  31. Groudev, S. (1987). “Use of heterotrophic microorganisms in mineral biotechnology”. Acta Biotechnologica, 7(4): 299-306.
  32. Santhiya, D., Subramanian, S., and Natarajan, K. (2000). “Surface chemical studies on galena and sphalerite in the presence of Thiobacillus thiooxidans with reference to mineral beneficiation”. Minerals Engineering, 13(7): 747-763.
  33. Suzuki, I., Chan, C., and Takeuchi, T. (1992). “Oxidation of elemental sulfur to sulfite by Thiobacillus thiooxidans cells”. Applied Environmental Microbiology, 58(11): 3767-3769.
  34. Santhiya, D., Subramanian, S., and Natarajan, K. (2001). “Surface chemical studies on sphalerite and galena using Bacillus polymyxa: I. Microbially induced mineral separation”. Journal of colloid interface Science, 235(2): 289-297.
  35. Santhiya, D., Subramanian, S., and Natarajan, K. (2002). “Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa”. Journal of Colloid Interface Science, 256(2): 237-248.
  36. Subramanian, S., Santhiya, D., and Natarajan, K. J. I. J. O. M. P. (2003). “Surface modification studies on sulphide minerals using bioreagents”. International Journal of Mineral Processing, 72(1-4): 175-188.
  37. Vasanthakumar, B., Ravishankar, H., and Subramanian, S. (2013). “Microbially induced selective flotation of sphalerite from galena using mineral-adapted strains of Bacillus megaterium”. Colloids Surfaces B: Biointerfaces, 112: 279-286.
  38. Sarvamangala, H., Natarajan, K., and Girisha, S. (2013). “Microbially-induced pyrite removal from galena using Bacillus subtilis”. International Journal of Mineral Processing, 120: 15-21.
  39. Patra, P. and Natarajan, K. (2006). “Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa”. Colloid Interface Science, 298(2): 720-729.
  40. Vasanthakumar, B., Ravishankar, H., and Subramanian, S. (2017). “Selective bio-flotation of sphalerite from galena using mineral–adapted strains of Bacillus subtilis”. Minerals Engineering, 110: 179-184.
  41. Santhiya, D., Subramanian, S., and Natarajan, K. (2001). “Surface chemical studies on sphalerite and galena using Bacillus polymyxa: II. Mechanisms of microbe–mineral interactions”. Journal of colloid interface Science, 235(2): 298-309.
  42. Bleeze, B., Zhao, J., and Harmer, S. L. (2018). “Selective attachment of Leptospirillum ferrooxidans for separation of chalcopyrite and pyrite through bio-flotation”. Minerals, 8(3): 86.
  43. Bradford, M. M. (1976). “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding”. Analytical Biochemistry, 72(1-2): 248-254.