Optimization of Blast Parameters based on Geo-mechanical Properties of Rock to Prevent Creation of Toes and Boulders in Mine Benches

Document Type : Research - Paper

Authors

1 M.Sc, Dept. of Mining Engineering, Sirjan Branch, Islamic Azad University, Sirjan, Iran

2 Assistant Professor, Dept. of Mining Engineering, Sirjan Branch, Islamic Azad University, Sirjan, Iran

Abstract

Toe and boulder due to blasts in the open pit mines reduce the production efficiency and increase extraction costs. In this study, these phenomena were reduced to correct the blast parameters of the ore blocks in the Sirjan Golgohar-2 Mine. For this purpose, the values of seven effective parameters including, an average of depth holes, burden, sub-drilling, powder factor, spacing, rock quality designation, and blastability index were collected for 19 blasting blocks in the studied mine. In this research, the values of Geo-mechanical properties of rock mass were obtained by the photogrammetric method and discontinuity set extractor software. Subsequently, the experimental models were created to predict the volume of boulder and toe relative to the volume of blasting block by nonlinear multiple regression. The predicted ability related to each of the created models by statistical indicators was investigated, and it was determined that the polynomial model to product boulder and the exponential model for toe are more accurate with 94.43 and 98.13 coefficients of determination respectively. Then, the minimization process of these phenomena was performed to access optimal values of controllable parameters and their coefficients in each of the created two models simultaneously by the combinational algorithm of Particle Swarm Optimization-Genetic algorithm. Finally, to evaluate the predicted ability of two optimized models, four blasts based on the optimized information were performed on the mine. The results showed that the models predicted the volume of boulder and toe relative to the block volume with the Root Mean Square Error 0.47 and 0.08 respectively.

Keywords

Main Subjects


  1. استوار، ر.؛ 1392؛ "آتشکاری در معادن". جلد دوم، چاپ نهم، انتشارات جهاد دانشگاهی صنعتی امیرکبیر، تهران.
  2. Khorzoughi, M., Hall, H., and Derek, A. (2018). “Rock fracture density characterization using measurement while drilling (MWD) techniques”. International Journal of Mining Science and Technology, 28: 859-864.
  3. Hamdi, E., and du Mouza, J. (2005). “A methodology for rock characterization and classification to improve blast results”. International Journal of Rock Mechanics and Mining Sciences, 42(1): 177-194.
  4. عباسی، ر.، مسعودیان، م.؛ 1390؛ "اصلاح پارامترهای حفاری و آتشکاری جهت خردایش بهینه در معدن سنگآهن چاه گز". سومین کنفرانس معادن روباز ایران، دانشگاه شهید باهنر کرمان.
  5. Safari, A., and Rajabu, K. (2011). “Regression Models of the Impact of Rock mass and Blast Design Variations on the Effectiveness of Iron Ore Surface Blasting”. Engineering, 3(1): 55-62.
  6. فرامرزی، ف.؛ 1390؛ "ارزیابی ریسک ناشی از انفجار در معادن روباز با روش ماتریس اندرکنش-اندیس آسیبپذیری". پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر کرمان.
  7. Chiappetta, F. )2004). “New Blasting Technique to Eliminate Subgrade Drilling, Improve Fragmentation, Reduce Explosive Consumption and Lower Ground Vibrations”. Journal of Explosives Engineering, 21(1): 10-12.
  8. Bastante, F., Alejano, L., and González, J. (2012). “Predicting the extent of blast-induced damage in rock masses”. International Journal of Rock Mechanics and Mining Sciences, 56: 44-53.
  9. وتوکوری، اس.، کاتسویاما، ک.؛ 1376؛ "درآمدی بر مکانیک سنگ". ترجمه فاروقی محمد، انتشارات مرکز خدمات فرهنگی سالکان.
  10.  Abbas pour, H. C., Drebenstedt, M., Badroddin, A., and Maghamini K. (2018). “Optimized design of drilling and blasting operations in open pit mines under technical and economic uncertainties by system dynamic modelling”. International Journal of Mining Science and Technology, 28(6): 839-848.
  11.  Xingwana, L. (2016). “Monitoring ore loss and dilution for mine-to-mill integration in deep gold mines: a survey-based investigation”. Journal of the Southern African Institute of Mining and Metallurgy, 116: 149-160.
  12. Suri, S., Juhari, A., Yaacob, S., Anua, N., and Zabidi, H. (2020). “Rock slope discontinuity extraction from 3D point clouds: Application to an open pit limestone quarry”. Warta Geologi, 46(2): 107-112.
  13. Ghiasi, M., Askarnejad, N., Dindarloo Saeid, R., and Shamsoddini, H. (2016). “Prediction of blast boulders in open pit mines via multiple regression and artificial neural networks”. International Journal of Mining Science and Technology, 26: 183-186.
  14. حسین‌زاده، م.، خوشرو، س. ح.؛ 1393؛ "عوامل ایجاد پاشنه و راههای کاهش آن در معدن میدوک". پنجمین کنفرانس مهندسی معدن، مصلا امام خمینی تهران.
  15. Ghosh A Deamen, J. J. K. (1990). “Fractal-based approach to determine the effect of discontinuities on blast fragmentation”. The 31th U.S. Symposium on Rock Mechanics (USRMS), 18-20 June, Golden, Colorado.
  16. مهندسین مشاور کوشا معدن؛ 1396؛ "گزارش تخمین و ارزیابی معدن شماره 2 گلگهر سیرجان".
  17. Riquelme, A. J., Abella´n A., and Toma´s R. (2015). “Discontinuity spacing analysis in rock masses using 3D point clouds”. Engineering Geology, 195: 185-195. DOI: https://doi.org/10.1016/j.enggeo.2015.06. 009.
  18. Riquelme, A. J., Abellan, A., Tom´as, R., and Jaboyedo´ff, M. (2014). “A new approach for semi-automatic rock mass joints recognition from 3d point clouds”. Computers & Geosciences, 68(0): 38-52. DOI: https://doi.org/10.1016/j.cageo.2014.03.014.
  19. Riquelme, A., Tomás, R., Cano, M., Pastor, J. L., and Abellán, A. (2018). “Automatic mapping of discontinuity persistence on rock masses using 3D point clouds”. Rock Mechanics and Rock Engineering, 51(10): 3005-3028.
  20. Priest, S., and Hudson, J. (1976). “Discontinuity spacings in rock”. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13: 135-148.
  21. Palmstro¨m, A. (1974). “Characterization of jointing density and the quality of rock masses”. Internal Report, A. B. Berdal, Norway.
  22. Alameda- Hernández, P., El Hamdouni, R., Irigara, C., and Chaco, J. (2019). “Weak foliated rock slope stability analysis with ultra-close-range terrestrial digital photogrammetry”. Bulletin of Engineering Geology and the Environment, 78: 1157-1171. DOI: 10.1007/s10064-017-1119-z.
  23.  Moomivand, H., and Vandyousefi, H. (2020). “Development of a new empirical fragmentation model using rock mass properties blasthole parameters and powder factor”. Arabian Journal of Geosciences, 13: 1173. DOI: https://doi.org/10.1007/s12517-020-06110-2.
  24. Gokhale, B. V. (2009). “Rotary drilling and blasting in large surface mining”. CRC Press/Balkema.