Outlining High Gas-Bearing Sub-Panels in Parvadeh I Coal Mine Using Regression and Geostatistical Simulation

Document Type : Research - Paper

Authors

1 Ph.D Student, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran

2 Associate Proffesor, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran

Abstract

High gas volume is the main reason of explosion, rock burst and fatal coal mining disasters. In a coal mining project, it is necessary to model the gas volume at all parts of the target seam. Amoung coal resources of Iran, Parvadeh I has high gas bearing seams with an average of 14 m3/t of gas. C1 coal seam is the main mining target in Parvadeh I and it was explored by 134 core drilling boreholes. Gas study has been carried out for 35 boreholes, in only central and eastern parts of the deposit. Gas volume is not measured at the deep western parts. In this study, fractured zones are identified and their gas data removed from the gas modelling procedure. It is found that gas volume and seam depth are highly correlated and also, two separated populations are evident in the gas vol. – depth cross plot. The first population is related to oxidized shallow, and the second one is interpreted as deep methane bearing zones of the seam. Using the regression kriging method with the seam depth as the auxiliary variable, the gas volume is estimated for the whole mining blocks of the C1 seam. The validity of the estimations is evaluated as 94% by the Jackknife method. In order to avoid the smoothing effect of kriging, the probability of critical gas zones (> 20 m3/t) is modelled by the conditional indicator cosimulation. Results demonstrated that 1.43 million m2 of the C1 seam with the probability of 75%, and 0.38 million m2 with the probability of 100% fell into the critical category. These critical gas zones are located in central, southern and western Parvadeh I. These zones are considered to be the main targets for the future gas drainage studies.

Keywords

Main Subjects


  1. Mares, T. E., Moore, T. A., and Moore, C. R. (2009). “Uncertainty of gas saturation estimates in a subbituminous coal seam”. International Journal of Coal Geology, 77(3-4): 320-327.
  2. مرکز آمار ایران؛ 1393؛ "سالنامه آماری 1393، اتاق بازرگانی، صنایع، معادن و کشاورزی ایران".
  3. United States Center of desease control and preventation; National Institute for Occupational Safety and Health (NIOSH), (2015). “All U.S Mining Disasters: 1839 to Present”. U.S. Department of Health & Human Services Yearbook, pp. 761.
  4. Zheng, Y. P., Feng, C. G., Jing, G. X., Qian, X. M., Li, X. J., Liu, Z. Y., and Huang, P. (2009). “A statistical analysis of coal mine accidents caused by coal dust explosions in China”. Journal of Loss Prevention in the Process Industries, 22(4): 528-532.
  5. Wang, L., Cheng, Y. P., and Liu, H. Y. (2014). “An analysis of fatal gas accidents in Chinese coal mines”. Safety Science, 62: 107-113.
  6. Cai ,Y., Liu, D., Zhang, K., Elsworth, D., Yao, Y., and Tang, D. (2014). “Preliminary evaluation of gas content of the No. 2 coal seam in the Yanchuannan area, southeast Ordos basin, China”. Journal of Petroleum Science and Engineering, 122(2): 675-689.
  7. Hamilton, S. K., Esterle, J. S., and Golding, S. D. (2012). “Geological interpretation of gas content trends, Walloon Subgroup, eastern Surat Basin, Queensland, Australia”. International Journal of Coal Geology, 101: 21-35.
  8. Qingming, L. (2011). “Research on the Rapid Measurement Technique of Gas Content”. Procedia Engineering, 26: 132-138.
  9. Strąpoć, D., Mastalerz, M., Eble, C., and Schimmelmann, A. (2007). “Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios”. Organic Geochemistry, 38(2): 267-287.
  10. William, R. (2002). “Gas content testing for outburst management compliance”. Coal Operators Conference, 3(Feburary): 58-64.
  11. Zhang, Q., and Ma, Q. J. (2015). “Dynamic pressure induced by a methane–air explosion in a coal mine”. Process Safety and Environmental Protection, 93(May 2013): 233-239.
  12. Kędzior, S., Kotarba, M. J., and Pękała, Z. (2013). “Geology, spatial distribution of methane content and origin of coalbed gases in Upper Carboniferous (Upper Mississippian and Pennsylvanian) strata in the south-eastern part of the Upper Silesian Coal Basin, Poland”. International Journal of Coal Geology, 105: 24-35.
  13. Yu-Long, D., Xiang-Lan, L., Xin-Quan, Z., Xu-Sheng, Z., and Qing-Hua, Z. (2011). “Study on Supporting Wood Fire Induced by Mine Methane Explosions”. Procedia Engineering, 26: 195-203.
  14. Sokol, E. V., Novikova, S. A., Alekseev, D. V., and Travin, A. V. (2014). “Natural coal fires in the Kuznetsk Coal Basin : geologic causes , climate , and age”. Russian Geology and Geophysic, 55: 1043-1064.
  15. Si, R., Li, R., and Huang, Z. (2012). “Material Evidence Analysis upon Accident Investigation of Gas and Coal Dust Explosion”. Procedia Engineering, 45: 458-463.
  16. Dubaniewicz, T. H. (2009). “From Scotia to Brookwood, fatal US underground coal mine explosions ignited in intake air courses”. Journal of Loss Prevention in the Process Industries, 22(1): 52-58.
  17. Cheng, J., and Luo, Y. (2013). “Modified explosive diagram for determining gas-mixture explosibility”. Journal of Loss Prevention in the Process Industries, 26(4): 714-722.
  18. Pang, L., Wang, T., Zhang, Q., Ma, Q., and Cheng, L. (2014). “Nonlinear distribution characteristics of flame regions from methane–air explosions in coal tunnels”. Process Safety and Environmental Protection, 92(3): 193-198.
  19. Bai, C., Gong, G., Liu, Q., Chen, Y., and Niu, G. (2011). “The explosion overpressure field and flame propagation of methane/air and methane/coal dust/air mixtures”. Safety Science, 49(10): 1349-1354.
  20. You, H., Yu, M., Zheng, L., and An, A. (2011). “Study on Suppression of the Coal Dust/Methane/Air Mixture Explosion in Experimental Tube by Water Mist”. Procedia Engineering, 26: 803-810.
  21. Procházka, P. P. (2014). “Rock bursts due to gas explosion in deep mines based on hexagonal and boundary elements”. Advances in Engineering Software, 72: 57-65.
  22. Cao, Y., He, D., and Glick, D. C. (2001). “Coal and gas outbursts in footwalls of reverse faults”. International Journal of Coal Geology, 48(1-2): 47-63.
  23. Li, H. (2001). “Major and minor structural features of a bedding shear zone along a coal seam and related gas outburst, Pingdingshan coalfield, Northern China”. International Journal of Coal Geology, 47(2): 101-113.
  24. Mahdevari, S., Shahriar, K., and Esfahanipour, A. ( 2014). “Human health and safety risks management in underground coal mines using fuzzy TOPSIS”. Science of the Total Environment, 488-489(1): 85-99.
  25. Krause, E., and Skiba J. (2014). “Formation of methane hazard in longwall coal mines with increasingly higher production capacity”. International Journal of Mining Science and Technology, 24(3): 403-407.
  26. Medic Pejic, L., García Torrent, J., Querol, E., and Lebecki, K. (2013). “A new simple methodology for evaluation of explosion risk in underground coal mines”. Journal of Loss Prevention in the Process Industries, 26(6): 1524-1529.
  27. Chen, H., Qi, H., and Feng, Q. (2013). “Characteristics of direct causes and human factors in major gas explosion accidents in Chinese coal mines: Case study spanning the years 1980-2010”. Journal of Loss Prevention in the Process Industries, 26(1): 38-44.
  28. Woolley, R. M., Fairweather, M., Falle, S. A. E. G., and Giddings, J. R. (2013). “Prediction of confined , vented methane-hydrogen explosions using a computational fluid dynamic approach”. International Journal of Hydrogen Energy, 38(0): 6904- 6914.
  29. Nian, Q., Shi, S., and Li, R. (2012). “Research and Application of Safety Assessment Method of Gas Explosion Accident in Coal Mine based on GRA-ANP-FCE”. Procedia Engineering, 45(50774033): 106-111.
  30. Fan, X., Yi, J., and Bao, Z. (2011). “Research on safety input research model for preventing coal gas explosion”. Procedia Engineering, 26: 2012-2017.
  31. Larry Grayson, R., Kinilakodi, H., and Kecojevic, V. (2009). “Pilot sample risk analysis for underground coal mine fires and explosions using MSHA citation data”. Safety Science,, 47(10): 1371-1378.
  32. Li, Z., Lu, Z., Wu, Q., and Zhang, A. (2007). “Numerical Simulation Study of Goaf Methane Drainage and Spontaneous Combustion Coupling”. Journal of China University of Mining and Technology, 17(4): 503-507.
  33. Tarvainen, M. (1999). “Recognizing explosion sites with a self-organizing network for unsupervised learning”. Physics of the Earth and Planetary Interiors, 113(1-4): 143-154.
  34. درمیان، م. ز.، جوانشیرگیو، م.، سرشکی، ف.، شبانی، ع.؛ 1392؛ "بازیابی گاز متان در معدن 1 مکانیزه پروده طبس و قابلیتهای نوین زهکشی CH4". نهمین کنفرانس دانشجویی مهندسی معدن ایران.
  35. توکلی، م.، سرشکی، ف.؛ 1385؛ "گاز زغال و روشهای کاهش آن (گاززدایی) در معدن پرورده طبس". پنجمین کنفرانس دانشجویی مهندسی معدن.
  36. ملایمت، ح.، محمدتراب، ف.، جراحی، ع.؛ 1391؛ "تخمین گازخیزی در معدن زغالسنگ پروده 1 طبس با استفاده از شبکه عصبی مصنوعی و رگرسیون غیرخطی". اولین کنگره ملی زغال‌سنگ ایران.
  37. ملایمت، ح.، محمدتراب، ف.، جهانگرد، ش.؛ 1393؛ "مدلسازی آماری تغییرات گاز متان در لایه زغالسنگ B2 کانسار پروده 4 طبس". سی و سومین گردهمایی علوم زمین.
  38. ملایمت، ح.، محمدتراب، ف.؛ 1392؛ "تخمین خاکستر زغال سنگ کانسار پروده 4 طبس با استفاده از کریجینگ عام و پیشنهاد نقاط بهینه حفاری تکمیلی". نشریه علمی پژوهشی مهندسی معدن ایران، شماره 20، ص 11-1.
  39. Flores, R. M., Rice, C. A., Stricker, G. D., Warden, A., and Ellis, M. S. (2009). “Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor”. International Journal of Coal Geology, 76: 52-75.
  40. Olea, R. A., and Luppens, J. A. (2015). “Mapping of coal quality using stochastic simulation and
    isometric logratio transformation with an application to a Texas lignite”
    . International Journal of Coal Geology, 152(PA): 80-93.
  41. Olea, R. A., Luppens, J. A., Egozcue, J. J., and Pawlowsky-Glahn, V. (2016). “Calorific value and
    compositional ultimate analysis with a case study of a Texas lignite”.
    International Journal of Coal Geology, 162: 27-33.
  42. Molayeat, H., Torab, F. M., Pawlowsky-Glahn, V., Hossein-Morshedy, A., and Egozcue, J. J. (2018). “The impact of the compositional nature of data on coal reserve evaluation, a case study in Parvadeh IV coal deposit, Central Iran”. International Journal of Coal Geology, 188: 94-111.
  43. Hengl, T., Bajat, B., Blagojević, D., and Reuter, H. I. (2008). “Geostatistical modeling of topography using auxiliary maps”. Computers & Geosciences, 34(12): 1886-1899.
  44. Ahmed, Sh., and De Marsily, G. (1987). “Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity”. Water Resources Research, 23(9): 1717.
  45. Odeh, I. O. A., McBratney, A. B., and Chittleborough, D. J. (1995). “Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging”. Geoderma,67(3-4): 215-226.
  46. Minasny, B., and McBratney, A. B. (2007). “Spatial prediction of soil properties using EBLUP with the Matérn covariance function”. Geoderma, 140(4): 324-336.
  47. ADAM consulting Engineers, (1992). “Tabas coal mine geological report (Parvadeh I) ”. Parvadeh Tabas Coal Co.