Investigation of the Effect of Various Parameters on the Ore Hardness of Gole-Gohar’s No. 1 Mine

Document Type : Research - Paper

Authors

1 M.Sc, Dept. of Mining Engineering, University of Kashan, Kashan, Iran

2 Assistant Professor, Dept. of Mining Engineering, University of Kashan, Kashan, Iran

3 M.Sc, Mineral Processing Senior Researcher, Golgohar Mining and Industrial Company, Sirjan, Iran

Abstract

Attention to the hardness of ores and their grindability is increasing due to the importance of energy consumption. In this study, 73 samples of iron ore were prepared from Gole-Gohar’s No. 1 mine, and the SAG power index test was performed to measure hardness. The distribution of the hardness values of these samples and its comparison with the results of the last five years showed a significant increase in the hardness of the mine so that the average hardness increased from 32.1 minutes to 65.6 minutes. In addition, the hardness distribution of Gole-Gohar mine demonstrated that 52%, 26%, and 22% of the ore were obtained with a hardness of less than 50 minutes (soft materials), 50-100 minutes (medium), and more than 100 minutes (hard), respectively. Among the hardness-related parameters, the total Fe, S, Fe/FeO ratio, density, and magnetite recovery in the Davis tube test had no significant relationship with hardness, indicating the special importance of homogenizing the feed to the processing plant based on ore hardness in addition to grade homogenization. However, mineralogical factors such as texture, the composition of the constituent minerals, and the type and frequency of the constituent minerals have a significant effect on the hardness of the samples.

Keywords

Main Subjects


  1. Bis, K. (2018). “Geometallurgical characterization of the Kittilä gold ore deposit”. European Mining, Minerals and Environmental Program (EMMEP), 24-35.
  2. Napier-Munn, T. J. (1996). “Mineral comminution circuits: their operation and optimization”. JKMRC Monograph Series in Mining and Mineral Processing, University of Queensland, 100-140.
  3. Starkey, J., and Dobby, G. (1996). “Application of the Minnovex SAG power index at five Canadian SAG plants”. Proceeding Autogenous and Semi-Autogenous Grinding, 345-360.
  4. Kosick, G., and Bennett, C. (1999). “The value of orebody power requirement profiles for SAG circuit design”. In Proceedings of the 31st Annual Meeting of the Canadian Mineral Processors, Ottawa, Canada, 241-254.
  5. عظیمی، ا.؛ 1385؛ "بررسی کارآیی مدار آسیاکنی کارخانه جدید پرعیارکنی مجتمع مس سرچشمه". پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر کرمان، ص 48-32.
  6. دهقانی فیروزآبادی، ج.؛ 1388؛ "بررسی عملکرد آسیای خود شکن کارخانه چغارت خط سه چاهون". پایان‌نامه کارشناسی ارشد، دانشگاه یزد، ص 36-25.
  7. جهانی، م.؛ 1388؛ "بررسی مصرف انرژی در آسیاهای نیمهخودشکن و گلولهای کارخانه مس سرچشمه". پایان‌نامه کارشناسی ارشد، دانشگاه تهران، ص 71-54.
  8. Amelunxen, P., Berrios, P., and Rodriguez, E. (2014). “The SAG grindability index test”. Minerals Engineering, 55: 42-51.
  9. اکبری نسب، ا.؛ 1382؛ "بررسی تاثیر سختی خوراک بر عملکرد آسیاهای خودشکن در مدار خردایش سنگ آهن گل گهر". پایان نامه کارشناسی ارشد, دانشگاه شهید باهنر کرمان، ص 14-25.
  10. لورک‌آقا، م.؛ 1392؛ "برنامه ریزی تولید معدن شماره یک گلگهر با در نظر گرفتن شاخص توان آسیای نیمه خودشکن". پایان‌نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد تهران جنوب، ص 47-59.
  11. بارانی بیرانوند، ک.، قربانی‌مقدم، م.؛ 1395؛ "بررسی تاثیر مشخصات بار ورودی بر عملکرد آسیای خودشکن خط سه کارخانه منیتیت شرکت گلگهر سیرجان". نشریه مهندسی معدن، دوره 11، شماره 32، ص 117-109.
  12. Razani, M., Masoumi, A., Rezarizadeh, M., and Noaparast, M. (2018). “Evaluating the Effect of Feed Particles Size and Their Hardness on the Particle Size Distribution of Semi-Autogenous (SAG) Mill’s Product”. Particulate Science and Technology, 36(7): 867-872.
  13. Behnamfard, A., Namaei Roudi, D., and Veglio, F. (2020). “The performance improvement of a full-scaleutogenous mill by setting the feed ore properties”. Journal of Cleaner Production, 271: 122-554.