Prediction of the Tricone Rotary Bits Wear by Combining Principal Component Analysis and Regression Methods in Blast Holes of Sarcheshmeh Copper Mine

Document Type : Research - Paper

Authors

1 Ph.D Student, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran

2 Professor, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran

3 Assistant Professor, Faculty of Mining, Isfahan University of Technology, Isfahan, Iran

4 M.Sc, Head of Drilling and Blasting Unit, Sarcheshmeh Copper Mine

Abstract

The first production cycle in open-pit mines is the drilling of blast holes, which is a major part of the exploitation costs. Bits are considered as one of the most important parts of drilling in operational processes due to the type of application and high costs. Examining the parameters affecting the bits wear can reduce the effect of wear, prevent wasting time and additional costs of the drilling process. Therefore, in this study, first, by determining the effective parameters based on the results of univariate regression and Principal Component Analysis (PCA), the relationship between these factors and the tricone rotary bits wear has been determined through statistical methods. Then, 100 linear and nonlinear models were examined to predict the rate of the tricone rotary bits wears during drilling, of which only 21 models, including 6 linear models and 15 nonlinear models, were approved. The performance of these models is evaluated based on the root mean square error (RMSE), coefficient of determination (R2), Variance accounted for (VAF), and mean absolute percentage error (MAPE). then the priority of each method is determined based on performance evaluation and prioritization strategies. In this research, three strategies of prioritization, the Rank average method, the Borda method, the Copeland method, and finally the Aggregate of these methods have been used. The ranking results show that the best model for predicting the tricone rotary bits wear is the regression model with independent variables of Weight on Bits (WOB), Uniaxial Compressive Strength (UCS), and Geological Strength Index (GSI). According to the results of sensitivity analysis, the Rij value of the Weight on Bits (WOB) is 0.982, which is more than the other two parameters of the final model. Therefore, this parameter has the greatest effect on the tricone rotary bits wear and it is the most important parameter of the final model.

Keywords

Main Subjects


  1. Abbaspour, H., Drebenstedt, C., Badroddin, M., and Maghaminik, A. (2018). “Optimized design of drilling and blasting operations in open pit mines under technical and economic uncertainties by system dynamic modelling”. International Journal of Mining Science and Technology, 28(6): 839-848.
  2. Park, J., and Kim, K. (2020). “Use of drilling performance to improve rock-breakage efficiencies: A part of mine-to-mill optimization studies in a hard-rock mine”. International Journal of Mining Science and Technology, 30(2): 179-188.
  3. Adebayo, B. (2011). “Effect of textural characteristics of rock on bit wear”. AU Journal of Technology, 14(4).
  4. Adebayo, B., and Akeju, V. O. (2012). “Evaluation of Tri-cone Bit Performance on Limestone Formation”. In Advanced Materials Research, Trans Tech Publications, 367: 555-560.
  5. Adebayo, B., and Akande, J. M. (2015). “Analysis of Button Bit Wear and Performance of Down-The-Hole Hammer Drill”. Ghana Mining Journal, 15(2): 36-41.
  6. Babatunde, A. (2015). “Development of rock bitwear models for selected rocks in Nigeria using dominant rock properties”. World Journal of Engineering, 12(4): 331-340.
  7. Saeidi, O., Elyasi, A., and Torabi, S. R. (2015). “Wear Assessment of the WC/CO cemented carbidetricone drillbits in an open pit mine”. Geomechanics and Engineering, 8(4): 477-493. DOI: DOI: https://doi.org/10.12989/gae.2015.8.4.477.
  8. Sahoo, S. K., and Choudhary, B. (2017). “Effect of uniaxial compressive strength of rock on penetration rate and bit wear rate of drill”. Ereen Gold Ore Deposit, Mongolia, 454.
  9. Dudek, R., and Władzielczyk, K. (2018). “Wear Testing of Buttons in Bits for Blasthole Drilling”. Tribologia.
  10. Mazen, A. Z., Rahmanian, N., Mujtaba, I. M., and Hassanpour, A. (2019). “Estimation of dulling rate and bit tooth wear using drilling parameters and rock abrasiveness”. Journal of Petroleum Engineering and Technology, 9(3): 1-12.
  11. Capik, M., and Batmunkh, B. (2020). “Measurement, prediction and modeling of bit wear in during drilling operations”. Journal of Mining and Environment.
  12. Piri, M., Hashemolhosseini, H., Mikaeil, R., Ataei, M., and Baghbanan, A. (2020). “Investigation of wear resistance of drill bits with WC, Diamond-DLC, and TiAlSi coatings with respect to mechanical properties of rock”. International Journal of Refractory Metals and Hard Materials, 87: 105113.
  13. Majeed, Y., Bakar, M. A., and Butt, I. A. (2020). “Abrasivity evaluation for wear prediction of button drill bits using geotechnical rock properties”. Bulletin of Engineering Geology and the Environment, 79(2): 767-787.
  14. Einali, M., Alirezaei, S., and Zaccarini, F. (2014). “Chemistry of magmatic and alteration minerals in the Chahfiruzeh porphyry copper deposit, south Iran: implications for the evolution of the magmas and physicochemical conditions of the ore fluids”. Turkish Journal of Earth Sciences, 23(2): 147-165.
  15. Schneider, A., Hommel, G., and Blettner, M. (2010). “Linear regression analysis: part 14 of a series on evaluation of scientific publications”. Deutsches Ärzteblatt International, 107(44): 776.
  16. Seber, G. A., and Lee, A. J. (2012). “Linear regression analysis”. John Wiley & Sons, 329.
  17. والپول، ر.؛ 1357؛ "مقدمهای بر احتمالات و آمار کاربردی". ترجمه میربهادر قلی آریانژاد و محمد ذهبیون، چاپ نهم، انتشارات دانشگاه علم و صنعت ایران.
  18. وایزبرگ، س.؛ 1374؛ "رگرسیون خطی کاربردی". ترجمه حسینعلی نیرومند، انتشارات دانشگاه فردوسی مشهد.
  19. Suzuki, T., Ohtaguchi, K., and Koide, K. (1994). “Correlation between flash points and chemical structures of organic compounds, using principal component analysis”. International Journal of. Chemical Engineering, 34(3): 393-402.
  20. Engelbrecht, A. P. (2007). “Computational intelligence: an introduction”. John Wiley & Sons.
  21. Gokceoglu, C. (2002). “A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition”. Engineering Geology, 66(1): 39-51.
  22. رمضان‌نیا، ط.؛ 1392؛ "ارزیابی ریسک زمینشناسی با استفاده از روشهای تصمیمگیری چند معیاره در تونلسازی مکانیزه (مطالعه موردی تونل انتقال آب نوسود)". پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی شاهرود.
  23. عطایی، م.؛ 1395؛ "تصمیمگیری چند معیاره". انتشارات دانشگاه صنعتی شاهرود، چاپ چهارم.
  24. Jong, Y. H., and Lee, C. I. (2004). “Influence of geological conditions on the powder factor for tunnel blasting”. International Journal of Rock Mechanics and Mining Sciences, 41: 533-538.