[1] Priezzhev, I. I., and Schollard, A. (2012). “Faults and fracture detection based on seismic surface orthogonal decomposition”. In 74th EAGE Conference and Exhibition incorporating EUROPEC, Copenhagen, Denmark, 4-7.
                                                                                                                [2] Wang, S., Yuan, S., Wang, T., Gao, J., and Li, S. (2018). “Three-dimensional geosteering coherence attributes for deep-formation discontinuity detection”. Geophysics, 83(6): O105-O113.
                                                                                                                [3] Zheng, Z. H., Kavousi, P., and Di, H. B. (2014). “Multiattributes and neural network-based fault detection in 3D seismic interpretation”. Advanced Materials Research, 838: 1497-1502.
                                                                                                                [4] Qi, J., Lin, T., Zhao, T., Li, F., and Marfurt, K. (2016). “Semisupervised multiattribute seismic facies analysis”. Interpretation, 4(1): SB91-SB106.
                                                                                                                [5] Henderson, J., Purves, S. J., Fisher, G., and Leppard, C. (2008). “Delineation of geological elements from RGB color blending of seismic attribute volumes”. The Leading Edge, 27(3): 342-350.
                                                                                                                [6] Boe, T. H., and Daber, R. (2010). “Seismic features and the human eye: RGB blending of azimuthal curvatures for enhancement of fault and fracture interpretation”. In 80th Annual International Meeting, SEG, Expanded Abstracts, 1535-1539.
                                                                                                                [7] Aqrawi, A. A., and Boe, T. H. (2011). “Improved fault segmentation using dip guided and modified Sobel filter”. In 81st Annual International Meeting, SEG, Expanded Abstracts, 999-1003.
                                                                                                                [8] Gazar, A. H., Javaherian, A., and Sabeti, H. (2011). “Analysis of effective parameters for semblancebased coherency attributes to detect micro-faults and fractures”. Journal of Seismic Exploration, 20: 23-44.
                                                                                                                [9] Miller, P., Dasgupta, S., and Shelander, D. (2012). “Seismic imaging of migration pathways by advanced attribute analysis, Alaminos Canyon 21, Gulf of Mexico”. Marine and Petroleum Geology, 34(1): 111-118.
                                                                                                                [10] Hale, D. (2013). “Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images”. Geophysics, 78(2): O33-O43.
                                                                                                                [11] Jaglan, H., Qayyum, F., and Hélène, H. (2015). “Unconventional seismic attributes for fracture characterization”. First Break, 33(3): 101-109.
                                                                                                                [12] Wu, X., and Hale, D. (2016). “Automatically interpreting all faults, unconformities, and horizons from 3D seismic images”. Interpretation, 4(2): T227-T237.
                                                                                                                [13] Wu, X. (2017). “Directional structure-tensorbased coherence to detect seismic faults and channels”. Geophysics, 2(82): A13-A17.
                                                                                                                [14] Noori, M., Hassani, H., Javaherian, A., Amindavar, H., and Torabi, S. (2019). “Automatic fault detection in seismic data using Gaussian process regression”. Journal of Applied Geophysics, 163: 117-131.
                                                                                                                [15] Pedersen, S. I., Randen, T., Sonneland, L., and Steen, Ø. (2002). “Automatic fault extraction using artificial ants”. In SEG Expanded Technical Program Abstracts, 512-515.
                                                                                                                [16] Bernáth, G. (2012). “Identification of fracture zones in a tight gas reservoir”. Conference & Exhibition on Earth Sciences and Environmental Protection, 15-20.
                                                                                                                [17] Roberts, A. (2001). “Curvature attributes and their application to 3D interpreted horizons”. First break, 2(19): 85-100.
                                                                                                                [18] Chehrazi, A., Rahimpour-Bonab, H., and Rezaee, M. R. (2013). “Seismic data conditioning and neural network-based attribute selection for enhanced fault detection”. Petroleum Geoscience, 19(2): 169-183.
                                                                                                                [19] Chopra, S., and Marfurt, K. J. (2007). “Seismic attributes for prospect identification and reservoir characterization”. Society of Exploration Geophysicists and European Association of Geoscientists and Engineers.
                                                                                                                [20] Tingdahl, K. M., and De Rooij, M. (2005). “Semiautomatic detection of faults in 3D seismic data”. Geophysical Prospecting, 53(4): 533-542.
                                                                                                                [21] منهاج، م. ب.؛ 1381؛ "مبانی شبکههای مصنوعی". انتشارات دانشگاه صنعتی امیرکبیر، جلد اول، ص 21-29.
                                                                                                                [22] Brouwer, F., and Huck, A. (2011). “An integrated workflow to optimize discontinuity attributes for the imaging of faults”. 31st annual GCSSEPM Foundation Bob F.Perkins Research Conference, Hoston, Texas, United States, 31: 496-532.
                                                                                                                [23] Beale, M. H., Hagan, M. T., and Demuth, H. B. (2010). “Neural network toolbox”. User’s Guide, MathWorks, 2: 129-203.
                                                                                                                [24] Bakulin, A., Grechka, V., and Tsvankin, I. (2000). “Estimation of fracture parameters from reflection seismic data—Part I: HTI model due to a single fracture set”. Geophysics, 65(6): 1788-1802.
                                                                                                                [25] Pegrum, R. M., and Spencer, A. M. (1990). “Hydrocarbon plays in the northern North Sea”. Geological Society, London, Special Publications, 50(1): 441-470.
                                                                                                                [26] Karbalaali, H., Javaherian, A., Dahlke, S., and Torabi, S. (2018). “Channel edge detection using 2D complex shearlet transform: a case study from the South Caspian Sea”. Exploration Geophysics, 49(5):704-712.
                                                                                                                [27] dGB plugins user documentation, OpendTect workflow tools (version 5.0), 2015.
                                                                                                                [28] Lancaster, S., and Whitcombe, D. (2000). “Fast-track ‘coloured’ inversion”. In 70th Annual International Meeting, SEG, Expanded Abstracts, 1572-1575.