شناسایی نواحی امیدبخش کانی سازی مس پورفیری در ناحیه چهارگنبد استان کرمان با استفاده از روش هوشمند یادگیری سریع

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین

2 استادیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین

3 دانشیار، گروه مهندسی معدن، دانشگاه ملایر، ملایر

چکیده

در مدلسازی پتانسیل‌های معدنی و شناسایی اهداف اکتشافی با استفاده از روش‌های هوش ‌مصنوعی، نحوه استفاده از نمونه‌های آموزشی و انتخاب الگوریتم مناسب یک مساله مهم است، زیرا عدم استفاده از الگوریتم آموزش مناسب موجب بروز خطاهای سیستماتیک در مدل خروجی می‌شود. هدف از مطالعه حاضر، تهیه نقشه پتانسیل ‌معدنی کانی‌سازی مس ‌پورفیری در منطقه چهارگنبد استان کرمان با استفاده از شبکه ‌عصبی ‌مصنوعی است. در این راستا نقشه‌های شاهد وزن‌دار پیوسته برای معیارهای توده‌ نفوذی، گسل، ژئوشیمی و آلتراسیون‌ها تولید و به عنوان ورودی شبکه‌ عصبی انتخاب شدند. برای آموزش شبکه از 16 نقطه شناخته‌ شده دارای ذخیره و 16 نقطه فاقد کانی‌سازی و همچنین از الگوریتم ماشین ‌یادگیری‌ سریع استفاده ‌شد. در نهایت مدل ‌پتانسیل ‌معدنی تولید شده با استفاده از شبکه ‌عصبی ‌مصنوعی با نتایج مدلسازی با روش تلفیق میانگین‌ هندسی، با استفاده از نمودار نرخ پیش‌بینی مساحت بهبودیافته، مورد مقایسه قرار گرفت و برای مدل‌های یاد شده، به ترتیب نرخ پیش‌بینی 34/0 و 27/0 به دست آمد. ارزیابی مدل‌ها اثبات کرد که اهداف شناسایی شده و مناطق دارای پتانسیل بالای کانی‌سازی مس، انطباق خوبی با اندیس‌ها و کانسارهای مس شناخته ‌شده و همچنین با سایر شواهد اکتشافی دارند، بنابراین می‌توانند برای طراحی ادامه عملیات اکتشاف مورد توجه قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Recognizing Porphyry Copper Mineralization Targets in Chahar-Gonbad Area of Kerman Province Using Extreme Learning Intelligent Method

نویسندگان [English]

  • M. Ghadiyanloo 1
  • A. Alimoradi 2
  • M. Yousefi 3
1 M.Sc Student, Dept. of Mining Enginiering, Faculty of Technical & Engineering, Imam Khomeini International University, Qazvin, Iran
2 Assistant professor, Dept. of Mining Enginiering, Faculty of Technical & Engineering, Imam Khomeini International University, Qazvin, Iran
3 Associate Professor, Dept. of Mining Enginiering, Malayer University, Malayer, Iran
چکیده [English]

Selection of training sites is an important and critical undertaking in the modeling procedure of mineral exploration targets using artificial intelligence approaches. This is because application of improper training algorithms results in exploration targeting models that carry bias and uncertainty. The present study aims to model exploration targets of porphyry copper mineralization in Chahar-Gonbad area, Kerman province, Iran, using artificial neural networks. In this regard, continuous weighted evidence maps of exploration criteria including proximity to intrusive contacts, fault density, multi-element geochemical signature and proximity to iron-oxide and argillic alterations were generated and applied as inputs to the neural network. Subsequently, 16 points with known mineral deposits and 16 points without mineralization were used to train the neural network through extreme learning algorithm. The ensuing exploration targeting model was compared with a model obtained by using geometric average integration method through prediction-area plot. The overall efficiency of the models are 0.34 and 0.27, respectively. Evaluation of the models demonstrated that the areas with high copper mineralization potential, marked as exploration targets, are in good conformity with known copper occurrences as well as with geological indicator features. Thus, the targets can be planned for further exploration programs.

کلیدواژه‌ها [English]

  • Continuous weighting method
  • Logistic function
  • Chahar-Gonbad area
  • Artificial neural networks
  • Exploration targets
  1. Hronsky, J. M. A., and Groves, D. I. (2008). “Science of targeting: definition, strategies, targeting and performance measurement”. Australian Journal of Earth Sciences, 55(1): 3-12.
  2. Davis, W. E., Jackson, W. H., and Richter, D. H. (1957). “Gravity prospecting for chromite deposits in Camaguey province, Cuba”. Geophysics, 22: 848-869.
  3. Bhattacharya, B. B., Mallick, K., and Roy, A. (1969). “Gravity prospecting for chromite at Sukinda and Sukrangi, Cuttack District, Orissa (India)”.Geoexploration, 7: 201-240.
  4. Bayrak, M. (2002). “Exploration of chrome ore in Southwestern Turkey by VLF-EM”. Journal of the Balkan Geophysical Society, 5: 35-46.
  5. Mohanty, W. K., Mandal, A., Sharma, S. P., Gupta, S., and Misra, S. (2011). “Integrated geological and geophysical studies for delineation of chromite deposits: A case study from Tangarparha, Orissa”. Geophysics, 76: 173-185.
  6. Rajendran, S., Al-Khirbash, S., Pracejus, B., Nasir, S., Al-Abri, A. H., Kusky, T. M., and Ghulam, A. (2012). “ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy”. Ore Geology Reviews, 44: 121-135.
  7. Pournamdari, M., and Hashim, M. (2014). “Detection of chromite bearing mineralized zones in Abdasht ophiolite complex using ASTER and ETM+ remote sensing data”. Arabian Journal of Geosciences, 7: 1973-1983.
  8. Asçi, M., and Bayat, C. (2015). “Chrome mine exploration by microgravity method in Fenk plateau, Osmaniye, Turkey”. In EGU General Assembly Conference Abstracts, pp. 17.
  9. Bonham-Carter, G. F. (1994). “Geographic information systems for geoscientists modeling with GIS”. Computer Methods in the Geoscientists, Pergamon, Oxford, 13: 398.
  10. Porwal, A., Carranza, E. J. M., and Hale, M. (2004). “A hybrid neuro-fuzzy model for mineral potential mapping”. Mathematical Geology, 36: 803-826.
  11. Carranza, E. J. M. (2008). “Geochemical anomaly and mineral prospectivity mapping in GIS”. Elsevier, 11: 365.
  12. Porwal, A., and Kreuzer, O. P. (2010). “Introduction to the Special Issue: Mineral prospectivity analysis and quantitative resource estimation”. Ore Geology Reviews 38: 121-127.
  13. Kreuzer, O. P., Miller, A. V., Peters, K. J., Payne, C., Wildman, C., Partington, G. A., Puccioni, E., McMahon, M. E., and Etheridge, M. A. (2015). “Comparing prospectivity modelling results and past exploration data: A case study of porphyry Cu–Au mineral systems in the Macquarie Arc, Lachlan Fold Belt, New South Wales”. Ore Geology Reviews, 71: 516-544.
  14. Yousefi, M., and Nykänen, V. (2017). “Introduction to the special issue: GIS-based mineral potential targeting”. Journal of African Earth Sciences, 12: 1-4.
  15. Yousefi, M., and Nykänen, V. (2016). “Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping”. Journal of Geochemical Exploration, 164: 94-106.
  16. شهابی فر، م.؛ 1383؛ "تخمین ذخیره کانسار با تکنیک شبکه عصبی مصنوعی". کنفرانس مهندسی معدن ایران، 12 تا 14 بهمن، دانشگاه تربیت مدرس، ایران.
  17. طهماسبی، پ.، هزارخانی، ا.؛ 1388؛ "ارائه روشی برای بهینه سازی شبکه عصبی برای برآورد عیار با استفاده از اطلاعات سیستم مس پورفیری سوناجیل-اهر". فصل‌نامه علوم زمین، سال بیست و یکم، شماره 81، ص 36-31.
  18. طهماسبی، پ.، هزارخانی، ا.؛ 1390؛ "استفاده از شبکه های عصبی-فازی-ژنتیکی به منظور تخمین عیار در کانسار مس پرفیری دره زار-کرمان". نشریه مهندسی معدن ایران، دوره ششم، شماره 12، ص 9-1.
  19. درویشی، م.، شیوا، ج.؛ 1390؛ "تخمین عیار مس در اکتشافات ژئوشیمیائی رسوبات رودخانه ای توسط روش شبکه عصبی پرسپترون چند لایه در منطقه غرب تالش-گیلان". اولین همایش ملی مس، تهران.
  20. مجدی فر، س.، کمالی، غ.؛ 1392؛ "تخمین عیار آهن در آنومالی تپه قرمز معدن سنگ آهن سنگان با استفاده از سه الگوریتم فازی عصبی تطبیقی". نشریه روش های تحلیلی و عددی در مهندسی معدن، شماره 5، ص 10-1.
  21. کریمی، الف.؛ 1395؛ "تعیین نشانگرهای ژئوفیزیکی IP/RS مرتبط با مقادیر عیار و تخمین عیار در معدن طلای زرشوران با استفاده از تکنیک شبکه عصبی مصنوعی". پایان نامه کارشناسی ارشد، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره).
  22. Huang, G., Huang, G. B, Song, S., and You, K. (2015). “Trends in Extreme Learning Machines: A Review”. Neural Networks, 61: 32-48.
  23. Luo, X., Yang, X., Chang, X., and Zhang, Ch. (2015). “Prediction of Hidden Dangers in Mine Production Using Timeliness Managing Extreme Learning Machine for Cloud Services”. IEEE Computer Society, 10: 1109.
  24. Wang, X., Lib, Y., Chenc, T., Yana, Q., and Ma, L. (2017). “Quantitative thickness prediction of tectonically deformed coal using Extreme Learning Machine and Principal Component Analysis: a case study”. Computers and Geosciences, 101: 38-47.
  25. یوسفی، م.، خالوکاکایی، ر.؛ 1383؛ "مدلسازی پتانسیل معدنی طلا وفلزات پایه در ناحیه ماهنشان با استفاده از سیستم اطلاعات جغرافیایی". کنفرانس مهندسی معدن ایران، ص 71-1.
  26. Berberian, F., Muir, I. D., Pankhurst, R. J., and Berberian, M. (1982). “Late cretaceous and early miocene andean-type plutonic activity in northern Makran and central”. Journal of the Geological Society, 139(5): 605-614.
  27. Afzal, P., Eskandarnejad Tehrani, M., Ghaderi, M., and Hosseini, M. R. (2016). “Delineation of supergene enrichment, hypogene and oxidation zones utilizing staged factor analysis and fractal modeling in Takht-e-Gonbad porphyry deposit, SE Iran”. Journal of Geochemical Exploration, 161: 119-127.
  28. Monjezi, M., and Dehghani, H. (2008). “Evaluation of effect of blasting pattern parameters on back break using neural networks”. International Journal of Rock Mechanics and Mining Sciences, 45(8): 1446-1453.
  29. Acharya, C., Mohanty, S., Sukla, L., and Misra, V. (2006). “Prediction of sulphur removal with Acidithiobacillus sp. using artificial neural networks”. Ecological Modelling, 190(1): 223- 230.
  30. Yasrebi, A. B., Hezarkhani, A., Afzal, P., Karami, R., Eskandarnejad Tehrani, M., and Borumandnia, A. (2020). “Application of an ordinary kriging–artificial neural network for elemental distribution in Kahang porphyry deposit, Central Iran”. Arabian Journal of Geosciences, 13(15): 1-14.
  31. Hagan, M. T., Demuth, H. B., and Beale, M. H. (2002). “Neural network design. Campus Publishing Service”. University of Colorado Bookstore, USA, pp. 736.
  32. Demuth, H., and Beale, M. (2002). “Neural network toolbox for use with MATLAB”. The Math Works Incorporated, USA, pp. 840.
  33. Huang, G. B., Yu Zhu, Q., and Siew, Ch. Kh. (2006). “Extreme Learning Machine: Theory and Applications”. Neurocomputing, 70: 489-501.
  34. Haupt, R. L., and Haupt, S. E. (2004). “Practical Genetic Algorithms”. 2nd edn with CD-ROM. John Wiley & Sons, New York, NY.
  35. Yousefi, M., and Carranza, E. J. M. (2016). “Data-driven index overlay and Boolean logic mineral prospectivity modeling in Greenfields exploration”. Natural Resources Research, 25: 3-18.
  36. Hezarkhani, A. (2006). “Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran”. Journalof Asian Earth Sciences, 27: 326-340.
  37. Boomeri, M., Nakashima, K., and Lentz, D. R. (2009). “The Miduk porphyry Cu deposit, Kerman, Iran: a geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes”. Journal of Geochemical Exploration, 103: 17-29.
  38. Sillitoe, R. H. (1972). “A plate tectonic model for the origin of porphyry copper deposits”. Economic Geology, 67: 184-197.
  39. Sillitoe, R. H. (1997). “Characteristics and controls of the largest porphyry copperegoldand epithermal gold deposits in the circum-Pacific region”. Australian Journalof Earth Sciences, 44: 373-388.
  40. Sillitoe, R. H. (2010). “Porphyry copper systems”. Economic Geology, 105: 3-41.
  41. Tangestani, M. H., and Moore, F. (2001). “Comparison of three principal component analysis techniques to porphyry copper alteration mapping. A case study, Meiduk area, Kerman, Iran”. Canadian Journal of Remote Sensing, 27: 176-182.
  42. Carranza, E. J. M., and Hale, M. (2002a). “Where are porphyry copper deposits spatially localized? A case study in Benguet province, Philippines”. Natural Resources Research, 11: 45-59.
  43. Peytcheva, I., Quadt, A.V., Neubauer, F., Frank, M., Nedialkov, R., Heinrich, C., and Strashimirov, S. (2009). “U-Pb dating, Hf-isotope characteristics and trace REEpatterns of zircons from Medet porphyry copper deposit, Bulgaria: implications for timing, duration and sources of ore-bearing magmatism”. Mineral petroleum, 96: 19-41.
  44. Pazand, K., Hezarkhani, A., Ataei, M., and Ghanbari, Y. (2011). “Combining AHP with GIS for predictive Cu porphyry potential mapping: a case study in Ahar area (NW, Iran)”. Natural Resources Research, 20: 251-262.
  45. Pirajno, F. (2010). “Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia)”. Journal of Geodynamics, 50: 325-346.
  46. Carranza, E. J. M. (2004). “Weights of evidence modeling of mineral potential: a case study using small number of prospects, Abra, Philippines”. Natural Resources Research, 13: 173-187.
  47. Carranza, E. J. M. (2008). “Geochemical anomaly and Mineral Prospectivity Mapping in GIS”. Handbook of Exploration and Enviromental Geochemistry, vol. 11, Elsevier, Amsterdam, pp. 368.
  48. Fakhari, S., Jafarira, A., Afzal, P., and Lotfi, M. (2019). “Delineation of hydrothermal alteration zones for porphyry systems utilizing ASTER data in Jebal-Barez area, SE Iran”. Iranian Journal of Earth Sciences, 11(1): 80-92.
  49. Gholami, R., Moradzadeh, A., and Yousefi, M. (2012). “Assessing the performance of independent component analysis in remote sensing data processing”. Journal of Indian Society of Remote Sensing, 40: 577-588.
  50. Ranjbar, H., Masoumi, F., and Carranza, E. J. M. (2011). “Evaluation of geophysics and spaceborne multispectral data for alteration mapping in Sar Chesmeh mining area”. International Journalof Remote Sensing, 32: 3309-3327.
  51. Tangestani, M. H., and Moore, F. (2002). “Porphyry copper alteration mapping in the Meiduk area. Iran”. International Journalof Remote Sensing, 23: 4815-4825.
  52. Beiranvand Pour, A., and Hashim, M. (2011). “Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran”. Journalof Asian Earth Sciences, 42: 1309-1323.
  53. Carranza, E. J. M., and Hale, M. (1997). “A catchment basin approach to the analysis of geochemical-geological data from Albay province, Philippines”. Journal of Geochemical Exploration, 60: 157-171.
  54. Yousefi, M., Kamkar-Rouhani, A., and Carranza, E. J. M. (2012). “Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping”. Journal of Geochemical Exploration, 115: 24-35.
  55. Yousefi, M., Kamkar-Rouhani, A., and Carranza, E. J. M. (2014). “Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping, Geochemistry: Exploration”. Geochemistry: Exploration, Environment, Analysis, 14(1): 45-58.
  56. Filzmoser, P., Hron, K., and Reimann, C. (2009). “Univariate statistical analysis of environmental (compositional) data: problems and possibilities”. Scienceof the Total Environment, 407: 6100-6108. Environment, Analysis, 14: p45-58.
  57. Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and Barcel_o-Vidal, C. (2003). “Isometric logratio transformations for compositional data analysis”. Mathematical Geology, 35: 279-300.
  58. Carranza, E. J. M. (2011). “Analysis and mapping of geochemical anomalies using lograti transforme stream sediment data with censored values”. Journal of Geochemical Exploration, 110: 167-185.
  59. Kaiser, H. F. (1958). “The varimax criteria for analytical rotation in factor analysis”. Psychometrika, 23: 187-200.
  60. Afzal, P., Yousefi, M., Mirzaie, M., Ghadiri-Sufi, E., Ghasemzadeh, S., and Daneshvar Saein, L. (2019). “Delineation of podiform-type chromite mineralization using geochemical mineralization prospectivity index and staged factor analysis in Balvard area (SE Iran)”. Journal of Mining and Environment, 10(3): 705-715.
  61. Zuo, R. (2011). “Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrumearea fractal modeling in the Gangdese Belt, Tibet (China)”. Journal of Geochemical Exploration, 111: 13-22.
  62. Bonham-Carter, G. F. (1994). “Geographic Information Systems for Geoscientists: Modelling with GIS”. Pergamon, Oxford.
  63. Carranza, E. J. M. (2008). “Geochemical anomaly and Mineral Prospectivity Mapping in GIS, Handbook of Exploration and Enviromental Geochemistry”. Vol. 11, Elsevier, Amsterdam.
  64. Brown, W. M., Gedeon, T. D., and Groves, D. I. (2003). “Use of noise to augment training data: a neural network method of mineral potential mapping in regions of limited known deposit examples”. Natural Resources Research, 12(3), 141-152.
  65. Yousefi, M., and Carranza, E. J. M. (2015). “Prediction–area (P–A) plotand C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling”. Computers & Geosciences, 79: 69-81.
  66. Nyka¨nen, V. (2008). “Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt Northern Fennoscandian Shield”. Natural Resources Research, 17: 29-48.
  67. Nykänen, V., Lahti, I., Niiranen, T., and Korhonen, K. (2015). “Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland”. Ore Geology Reviews, 71: 853-860.
  68. Chen, Y. (2015). “Mineral potential mapping with a restricted Boltzmann machine”. Ore Geology Reviews, 71: 749-760.
  69. Zuo, R. (2018). “Selection of an elemental association related to mineralization using spatial analysis”. Journal of Geochemical Exploration, 184: 150-157.
  70. Chen, Y., and Wu, W. (2016). “Mapping mineral prospectivity using an extreme learning machine regression”. Ore Geology Reviews, 80: 200-213.
  71. Roshanravan, B., Aghajani, H., Yousefi, M., and Kreuzer, O. (2018). “An improved Prediction-Area plot for prospectivity analysis of mineral deposit”.Natural Resources Research, 28: 1089-1105.
  72. Yousefi, M., Kreuzer, O. P., Nykänen, V., and Hronsky, J. M. A. (2019). “Exploration information systems―a proposal for the future use of GIS in mineral exploration targeting”. Geology Reviews, 111: 103005.
  73. Yousefi, M., and Carranza, E. J. M. (2015). “Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping”. Computers & Geosciences, 74: 97-109.
  74. Yousefi, M., and Carranza, E. J. M. (2015). “Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping”. Computers & Geosciences, 83: 72-79.
  75. Yousefi, M., and Carranza, E. J. M. (2017). “Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values”. Journal of African Earth Sciences, 128: 47-60.