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Abstract: Selection of training sites is an important and critical undertaking in the modeling procedure 
of mineral exploration targets using artificial intelligence approaches. This is because application of 
improper training algorithms results in exploration targeting models that carry bias and uncertainty. The 
present study aims to model exploration targets of porphyry copper mineralization in Chahar-Gonbad area, 
Kerman province, Iran, using artificial neural networks. In this regard, continuous weighted evidence maps 
of exploration criteria including proximity to intrusive contacts, fault density, multi-element geochemical 
signature and proximity to iron-oxide and argillic alterations were generated and applied as inputs to the 
neural network. Subsequently, 16 points with known mineral deposits and 16 points without mineralization 
were used to train the neural network through extreme learning algorithm. The ensuing exploration targeting 
model was compared with a model obtained by using geometric average integration method through 
prediction-area plot. The overall efficiency of the models are 0.34 and 0.27, respectively. Evaluation of 
the models demonstrated that the areas with high copper mineralization potential, marked as exploration 
targets, are in good conformity with known copper occurrences as well as with geological indicator features. 
Thus, the targets can be planned for further exploration programs.

Keywords: Continuous weighting method, Logistic function, Chahar-Gonbad area, Artificial neural 
networks, Exploration targets. 

INTRODUCTION 
Mineral potential models are generated at any exploration scale, from regional to local, to delineate 

mineral exploration targets [1]. Many mineral deposits are hidden and buried, and so, do not show direct 
visible evidence. Thus, discovering ore deposition sites has been always an exploration challenge [2,3]. In 



57 دوره هفتم، شماره 1، بهار 1401

Journal of Mineral Resources Engineering (JMRE)                                                                   

12

this regard, according to the presence of geological indicator features and spatial proxies of mineralization 
such as alterations, geochemical anomalies, and structural features, the possible occurring of mineralization 
events are investigated through mineral prospectivity analysis [4-6].

 General methods of generating weighted evidence layers for use in mineral exploration targeting are 
categorised into knowledge-driven, data-driven, hybrid and logistic-based continuous approaches [1-3,7]. 
The knowledge-driven methods are used in areas where there are no or a few number of known deposits [8]. 
If there are sufficiently known deposits in an area, data-driven modelling methods can be used to determine 
exploration targets [2,3,7,8]. In continuous weighting methods, the spatial positions of mineralization events, 
or so called as training points, are not used in the modelling procedure [8]. Furthermore, the exploration 
spatial data, representing mineralization, are not discretised using arbitrary intervals. As a result, this 
method overcomes the bias and uncertainty in the weighting procedures [9].

 Extreme Learning Machine (ELM) was developed to address previous shortcomings of supervised 
methods and was found to be significantly more efficient than other algorithms. Huang et al. used three 
algorithms, including Back Propagation (BP), Support Vector Machine (SVM), and ELM, to process satellite 
imagery to study plants and diabetes, and the results showed that the ELM algorithm is significantly more 
efficient than others [10]. Luo et al. used Timeliness Managing Extreme Learning Machine (TMELM), 
On-line Sequential Extreme Learning Machine (OSELM) and, ELM algorithms to investigate possible 
coal mine accidents during mineral production [11]. The results proved the superiority of ELM algorithm 
over two other algorithms. Wang et al. examined the data of a coal mine located in western China, using 
Principal Component Analysis (PCA) and the ELM algorithm, to investigate and determine the model 
of deposit thickness, and observed that the accuracy of the ELM algorithm is high in generalization and 
education [12]. 

Following the above-mentioned researches, this paper aims to evaluate the efficiency of ELM training 
algorithm in prospectivity analysis and data integration for exploration targeting through artificial neural 
network and to compare its effectiveness with geometric average integration method [6]. 

METHODS
In this research, a nonlinear logistic function was applied to generate continuously-weighted evidence 

maps for modelling exploration targets. For this five weighted layers including proximity to host rock, 
fault density, geochemical signature, and proximity to Iron oxide and argillic alterations were generated. 
The weighted maps were then integrated with two different methods, geometric average (without using 
training samples) [5] and artificial neural network (using training samples) [10]. Finally the models were 
compared by prediction-area plot [8]. In order to better illustrate and evaluate the methods used in this 
paper, exploration data of porphyry copper deposits in Chahar-Gonbad region of Kerman province, Iran, 
were applied (Figure1).

FINDINGS AND ARGUMENT
Continuous weighting methods, unlike the existing conventional data-driven, knowledge- driven and 

hybrid approaches, do not require classification and then weight allocation to the classes of spatial data 
[1]. Thus, by using the continuous weighting methods, the drawbacks of the conventinal methods are 
modulated. In the continuous weighting method, fuzzy weights are assigned to the continuous exploration 
values using logistic functions [5]. Figure 2 shows the continuous weighted maps in this study. In this 
method, the known deposit locations and expert’s opinion are not used for weighting [4]. After generation 
of the continuousely-weighted evidence layers, they were integrated by geometric average function (Figure 
3A) and neural network method (Figure 4A). The exploration targeting models were then classified for 
prioritization of the area for further exploration progranms (Figures 3B and 4B) [13].

To assess the ability of the two models generated, in terms of predicting undiscoverd mineralization, 
location of 16 known mineral deposits and 16 non-deposit locations (without mineralization) were applied 
two make the prediction-area plots (Figure 5) [5,14]. In this plot, there are three curves, namely the curve 
of (1) the prediction rate of mineral deposit corresponding to the prospectivity classes (MDL), (2) the 
percentage of the areas occupied by the corresponding classes of mineral prospectivity (Area), and (3) 
the prediction rate of non-deposit locations corresponding to the prospectivity classes (NDL) [5,14]. The 
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comparison demonstrated that the potential model produced with the use of neural network data-driven 
method with an overall efficiency of 0.34 is better than the potential model produced using the geometric 
average method with an overall efficiency of 0.27. It should be emphasized that the geometric average 
method does not require training data and can work well in areas without known mineral deposits.

Figure 1. A: Location of the study area in Iran and B: its simplified geological map 
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Figure 2. Continuously-weighted evidence layer of A: proximity to intrusive rocks, B: fault density, C: proximity to 
argillic alteration, D: proximity to iron-oxide alteration, and E: multi element geochemical signature 
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Figure 3. A: Geometric average exploration targeting model and B: model of the ensuing classified targets 

Figure 4. A: Artificial neural network exploration targeting model and B: model of the ensuing classified targets 

Figure 5. Prediction-area plot for exploration targeting model using A: the geometric average and B: artificial 
neural network methods
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CONCLUSIONS
Findings of this paper can be remarked as below:
- Extreme learning machine can efficiently be used to train artificial neural networks for the purpose 

of increasing the exploration success of targeting models. That is due to the various activation functions, 
strong ability in data analysis, high accuracy in generalization and training, and fast processing time of the 
ELM algorithm. 

- It is suggested to design further exploration programs by focusing on the targets generated in the 
present study in order to vectoring towards undiscovered mineral deposit sites.
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