[1] Wills, B. A., and Finch, J. (2016). “Mineral Processing Technology: An Introduction to the Practical Aspects of ore Treatment and Mineral Recovery”. 8th Edition, Butterworth-Heinemann.
[2] Finch, J.A. Dobby, G.S., 1990, “Column Flotation”. Pergamon Press, Oxford.
[3] Alford, R. A. (1991). “Modelling and Design of Flotation Column Circuits”. PhD Thesis, Department of Mining and Metallurgy, University of Queensland.
[4] Kosick, G. A., Kuehn, L. A., and Freberg M. (1988). “Column flotation of galena at the Polaris Concentrator”. CIM Bulletin, December, 54-60.
[5] Bergh, L. G., Yianatos, J., and Leiva, C. A. (1998). “Fuzzy supervisory control of flotation columns”. Minerals Engineering, 11(8): 739-748.
[6] Gomez, C. O., and Finch, J. A. (2007). “Gas dispersion measurements in flotation cells”. International Journalof Mineral Processing, 84: 51-58.
[7] Durance, M. V., Guillaneau, J. C., Villeneuve, J., Fourniguet, G., and Brochot, S. (1993). “Computer simulation of mineral and hydrometallurgical processes: USIM PAC 2.0, a single software from design to optimization”. In Proceedings of the International Symposium on Modeling, Simulation and Control of Hydrometallurgical Processes. Quebec, Canada, August 24-September 2, 109-121.
[8] Durance, M. V., Guillaneau, J. C., Villeneuve, J., Brochot, S., and Fourniguet, G. (1994). “USIM PAC 2 for Windows: Advanced simulation of mineral processes”. In Proceedings of the 5th International Mineral Processing Symposium. Cappadocia, Turkey, September, 539-547.
[9] Brochot, S., Wiegel, R. L., Ersayin, S., and Touze, S. (2006). “Modeling and simulation of comminution circuits with USIM PAC”. Advances in Comminution, Ed. Kawatra, S. K., SME, 495-511.
[10] BRGM, (2004). Caspeo, USIM PAC 3.2 user manual of steady state mineral processing simulator (Unit operation model guide).
[11] Napier-Munn, T. J., Morrell, S., Morrison, R. D., and Kojovic, T. (1996). “Mineral Comminution Circuits: Their Operation and Optimisation”. first ed. Julius Kruttschnitt Mineral Research Centre, Indooroopilly, Qld. (Reprinted with Minor Corrections 1999, 2005, Ed. 2005).
[12] Söderman, P., Storeng, Samskog, P. O., Guyot, O., and Broussaud, A. (1996). “Modelling the new LKAB Kiruna concentrator with USIM PAC”. International Journal of Mineral Processing, 44-45: 223-235.
[13] Villeneuve, J., Guillaneau, J. C., and Durance, M. V. (1995). “Flotation modelling: A wide range of solutions for solving industrial problems”. Minerals Engineering, 8(4/5): 409-420.
[14] Hart, S., Valery, W., Clements, B., Reed, M., Song, M., and Dunne, R. (2001). “Optimization of the Cadia Hill SAG mill circuit”. SAG 2001, Vancouver, B.C., Canada.
[15] Liu, Yi, and Spencer, S. (2004). “Dynamic simulation of grinding circuits”. Minerals Engineering, 17: 1189-1198.
[16] Yianatos, J., Carrasco, C., Bergh, L., Vinnett, L., and Torres, C. (2012). “Modelling and simulation of rougher flotation circuits”. International Journal of Mineral Processing, 112-113: 63-70.
[17] Karimi, M., Akdogan, G., and Bradshaw, S. M. (2014). “A computational fluid dynamics model for the flotation rate constant, Part I: Model development”. Minerals Engineering, 69: 214-222.
[18] Karimi, M., Akdogan, G., Bradshaw, S.M., 2014. “A computational fluid dynamics model for the flotation rate constant, Part II: Model validation”. Minerals Engineering 69, 205-213.
[19] Li, S., Schwarz, M. P., Feng, Y., Witt, P., and Sun, C. (2019). “A CFD study of particle-bubble collision efficiency in froth flotation”. Minerals Engineering, 141: 105855.
[20] Koh, P. T. L., and Schwarz, M. P. (2008). “Modelling attachment rates of multi-sized bubbles with particles in a flotation cell”. Minerals Engineering, 21: 989-993.
[21] Massinaei, M., Kolahdoozan, M., Noaparast, M., Oliazadeh, M., Sahafipour, M., and Finch, J. A. (2007). “Mixing characteristics of Industrial columns in rougher circuit”. Minerals Engineering, 20: 1360-1367.
[22] Yianatos, J. B., Bergh, L. G., Diaz, F., and Rodriguez, J. (2005). “Mixing characteristics of industrial flotation equipment”. Chemical Engineering Science, 60: 2273-2282.
[23] Dobby G. S., and Finch J. A. (1986). “Particle Collision in Columns-gas Rate and Bubble Size Effects”. Canadian Metallurgical Quarterly, 25(1): 9-13.
[24] Massinaei, M., Kolahdoozan, M., Noaparast, M., Oliazadeh, M., Yianatos, J., Shamsadini, R., and Yarahmadi, M. (2009). “Hydrodynamic and kinetic characterization of industrial columns in rougher circuit”. Minerals Engineering, 22: 357-365.
[25] Xu, M., and Finch, J. A. (1990). “Simplification of bubble size estimation in a bubble swarm”. Journal of Colloid and lntelface Science, 140(1): 298-299.
[26] Banisi, S., and Finch, J. A. (1994). “Reconciliation of bubble size estimation methods using drift flux analysis”. Minerals Engineering, 7(12): 1555-1559.
[27] Falutsu, M., and Dobby, G. S. (1989). “Direct measurement of froth drop back and collection zone recovery in a laboratory flotation column”. Minerals Engineering, 2(3): 377-386.
[28] Van Deventer, J. S. J., Feng, D., and Burger, A. J. (2004). “Transport phenomena at the pulp–froth interface in a flotation column: I. Recovery profiles”. International Journal of Mineral Processing, 74: 201-215.
[29] Schwarz, S., and Grano, S. (2005). “Effect of particle hydrophobicity on particle and water transport across a flotation froth”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 256: 157-164.
[30] Seaman, D. R., Franzidis, J. P., and Manlapig, E. V. (2004). “Bubble load measurement in the pulp zone of industrial flotation machines-a new device for determining the froth recovery of attached particles”. International Journal of Mineral Processing, 74: 1-13.
[31] Banisi, S., Finch, J. A., Laplante, A. R., and Weber, M. E. (1995). “Effect of solid particles on gas hold-up in flotation columns-I. measurement”. Chemical Engineering Science, 50(14): 2329-2334.
[32] Banisi, S., Finch, J. A., Laplante, A. R., and Weber, M. E. (1995). “Effect of solid particles on gas hold-up in flotation columns-II. investigation of mechanism of gas hold-up reduction in presence of solids”. Chemical Engineering Science, 50(14): 2335-2342.
[33] Garibay, R., Gallegos, P. Uribe, M., and Nava, A., F. (2002). “Effect of Collection Zone Height and Operating Variables on Recovery of Overload Flotation Columns”. Minerals Engineering, 15: 325-331.
[34] Tao, D., Luttrell, G. H., and Yoon, R. H. (2000). “A parametric study of froth stability and its effect on column flotation of fine particles”. International Journal of Mineral Processing, 59: 25-43.