بهینه‌سازی فرایند تخمین کریجینگ با استفاده از آزمون کمی پارامترهای محدوده جستجو در معدن شماره یک گل گهر

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی معدن، آزمایشگاه شبیه‌سازی و پردازش داده، دانشکده مهندسی معدن، دانشگاه تهران، تهران

2 دانشیار، آزمایشگاه شبیه‌سازی و پردازش داده، دانشکده مهندسی معدن، دانشگاه تهران، تهران

چکیده

کریگینگ به‎عنوان بهترین روش تخمینی خطی نااریب در مدل‌سازی دو بعدی و سه بعدی مطالعات مربوط‌ به علوم زمین، به ارزیابی معیارهای مختلف وابسته است. علاوه بر شناسایی داده‌های خارج از ردیف و خوشه‌زدایی داده‌های مورد مطالعه، شاخص‌هایی از قبیل تعریف شعاع جستجو بهینه و مناسب، نقش مهمی در افزایش دقت مدل‌سازی دارند. در این مقاله، با استفاده از معیار آزمون کمی شعاع جستجوی کریگینگ (QKNA)، مدل‌سازی بهینه‌ای از معدن شماره یک سنگ آهن گل‌گهر سیرجان ارایه شده است. اهمیت و ضرورت آزمون QKNA به‌دلیل آن است که وزن‌های تخمین مستقیما تحت تاثیر معیارهایی از قبیل شعاع جستجو، تعداد نقاط موجود در پنجره جستجو، استفاده یا عدم استفاده از روش اکتانت و غیره است. برای این منظور، مجموعه داده‌های مورد مطالعه براساس تغییرات کانسار به دو زون مگنتیتی و هماتیتی تقسیم شد و سپس با تغییر معیارهای معرفی‌شده، برای هر کدام از زون‌ها تعداد 180 استراتژی تخمین، مورد بررسی قرار گرفت. به‌منظور به‌دست آوردن معیارهای بهینه تخمین در هر زون، در استراتژی‌های تعریف‌شده شاخص‌هایی از قبیل واریانس تخمین، شیب رگرسیون بین داده‌های واقعی و تخمینی، بازده کریگینگ و وزن میانگین ارزیابی شدند. بر این اساس، شعاع‌های جستجوی بهینه در زون اول 688، 226 و 152 و در زون دوم 482، 233 و 303 به‎دست آمدند. همچنین، بازه بهینه تعداد نقاط موجود در بیضیگون جستجو، در زون اول بین 3 تا 12 و در زون دوم بین 5 تا 15 است.

کلیدواژه‌ها


عنوان مقاله [English]

Design Optimization of Estimation Process Using the Quantitative Kriging Neighbourhood Analysis in the Gol-E-Gohar No.1 Mine

نویسندگان [English]

  • S. Talesh Hosseini 1
  • Omid Asghari 2
1 Ph.D. Candidate, Simulation and Data Processing Labratory, Dept. of Mining Engineering, University of Tehran, Tehran, Iran
2 Associate Professor, Simulation and Data Processing Labratory, Dept. of Mining Engineering, University of Tehran, Tehran, Iran
چکیده [English]

As the best linear estimator, Kriging is now a well-established method in all types of  2D and 3D modeling, including geochemical mapping, rock types modeling, geophysical mapping, and resource estimation. In general, a multi-stage approach can be used for evaluating kriging parameters. The first step in the assessment of mineral resources using linear geostatistics is to remove outlier data and to find the best de-cluster size. After this stage, variogram models in the area under study must be provided by a spherical model. In this context, investigating kriging performance has always been of interest to numerous researchers. Evaluating kriging implementation for different applications has been a growing field of study in the last few decades. Although many authors have discussed various kriging parameters, it seems necessary to conduct more detailed reviews on range searching, high and low nugget effect, as well as 2D and 3D estimations. In this paper, an optimal search range was determined using quantitative kriging neighborhood analysis (QKNA), and the utility of this search range was explored by assessing kriging efficiency. To this end, the borehole dataset of the Gol-E-Gohar No.1 mine was used. In total, 2579 samples (of length 3 m) make up the database for this study.  In this research, the dataset was divided into two zones based on their associated geological domains. Based on the aforementioned parameters, 180 estimation strategies were generated for each rock type. The results indicate that the optimal search ranges of zone 1 are 688, 226, and 152, and the optimal search ranges of zone 2 are 482, 233, and 303.

کلیدواژه‌ها [English]

  • Kriging
  • Data preprocessing
  • Variogram
  • Optimal search range
  • Quantitative kriging Neighborhood analysis
[1] David, M. (1977). “Geostatistical ore reserve estimation. Developments in Geomathematics 2”. Am-sterdam: Elsevier, 1: pp. 400.
[2] Chiles, J. P., and Delfiner, P. (2009). “Geostatistics: modeling spatial uncertainty”. John Wiley & Sons, pp. 704.
[3] Armstrong, M. (1998). “Basic linear geostatistics”. Springer Science & Business Media, 1: pp. 160.
[4] Changjiang, L., Zhiming, L., Tuhua, M., and Xingsheng, Z. (2009). “A simple kriging method incorporating multiscale measurements in geochemical survey”. Journal of Geochemical Exploration, 101(2): 147-154.
[5] Reis, A. P., Sousa, A. J., Da Silva, E. F., Patinha, C., and Fonseca, E. C. (2004). “Combining multiple correspondence analysis with factorial kriging analysis for geochemical mapping of the gold–silver deposit at Marrancos (Portugal)”. Applied Geochemistry, 19(4): 623-631.
[6] Jimenez-Espinosa, R., Sousa, A. J., and Chica-Olmo, M. (1993). “Identification of geochemical anomalies using principal component analysis and factorial kriging analysis”. Journal of Geochemical Exploration, 46(3): 245-256.
[7] Panahi, A., Cheng, Q., and Bonham-Carter, G. F. (2004). “Modelling lake sediment geochemical distribution using principal component, indicator kriging and multifractal power-spectrum analysis: a case study from Gowganda, Ontario”. Geochemistry: Exploration, Environment, Analysis, 4(1): 59-70.
[8] Soltani, F., Afzal, P., and Asghari, O. (2014). “Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene zone of Sungun copper deposit, NW Iran”. Journal of Geochemical Exploration, 140: 64-76.
[9] Talesh Hosseini, S., Asghari, O., and Ghavami Riabi, S. R. (2018). “Spatial modelling of zonality elements based on compositional nature of geochemical data using geostatistical approach: a case study of Baghqloom area, Iran”. Journal of Mining and Environment, 9(1): 153-167.
[10] Webber, T., Costa, J. F. C. L., and Salvadoretti, P. (2013). “Using borehole geophysical data as soft information in indicator kriging for coal quality estimation”. International Journal of Coal Geology, 112: 67-75.
[11] Rossi, M. E., and Deutsch, C. V. (2013). “Mineral resource estimation”. Springer Science & Business Media, 1: pp. 337.
[12] Varouchakis, E. A., Kolosionis, K., and Karatzas, G. P. (2016). “Spatial variability estimation and risk assessment of the aquifer level at sparsely gauged basins using geostatistical methodologies”. Earth Science Informatics, 9(4): 437-448.
[13] Pyrcz, M. J., and Deutsch, C. V. (2014). “Geostatistical reservoir modeling”. Oxford University Press, 1: pp. 449.
[14] Rivoirard, J. (1987). “Two key parameters when choosing the kriging neighborhood”. Mathematical Geology, 19(8): 851-856.
[15] Vann, J., Jackson, S., and Bertoli, O. (2003), November. “Quantitative kriging Neighbourhood analysis for the mining geologist-a description of the method with worked case examples”. In 5th International Mining Geology Conference, Bendigo, Australia, Melbourne, Australian Institute of Mining & Metallurgy, 8: 215-223.
[16] Coombes, J. (2008). “The art and science of resource estimation”. A practical Guide for Geologists and Engineers, Coombes Capability, pp. 264.
[17] Emery, X. (2009). “The kriging update equations and their application to the selection of neighboring data”. Computational Geosciences, 13(3): 269-280.
[18] Boyle, C. (2010). “Kriging Neighbourhood analysis by slope of regression and weight of mean–evaluation with the Jura data set”. Mining Technology, 119(2): 49-58.
[19] Shademan Khakestar, M., Madani, H., Hassani, H., and Moarefvand, P. (2013). “Determining the best search Neighbourhood in reserve estimation, using geostatistical method: A case study anomaly No 12A iron deposit in central Iran”. Journal of the Geological Society of India, 81(4): 581-585.
[20] Coombes, J., and Boamah, P. (2015). “Local kriging Neighbourhood optimization”. In Africa Australia Technical Mining Conference, 27-35.
[21] Hundelshaussen, R., Costa, J. F. C. L., Marques, D. M., and Bassani, M. A. A. (2018). “Localised kriging parameter optimization based on absolute error minimization”. Applied Earth Science, 127(4): 153-162.
[22] Madani, N., and Emery, X. (2019). “A comparison of search strategies to design the Cokriging neighborhood for predicting coregionalized variables”. Stochastic Environmental Research and Risk Assessment, 33(1): 183-199.
[23] Yfantis, E. A., Flatman, G. T., and Behar, J. V. (1987). “Efficiency of kriging estimation for square, triangular, and hexagonal grids”. Mathematical Geology, 19(3): 183-205.
[24] Krige, D. G. (1996). “A practical analysis of the effects of spatial structure and of data available and accessed, on conditional biases in ordinary kriging”. Geostatistics Wollongong, 96: 799-810.
[25] Deutsch, J. L., Szymanski, J., and Deutsch, C. V. (2014). “Checks and measures of performance for kriging estimates”. Journal of the Southern African Institute of Mining and Metallurgy, 114(3): 223-223.
[26] Badr, M. J., Masoudi, F., Collins, A. S., and Sorbi, A. (2012). “Mineralogical evidence for regional metamorphism overprinted by contact metamorphism”. Acta Geologica Sinica (English Edition), 86(1): 48-54.
[27] سبزهای، م.؛ 1376؛ "نقشه زمینشناسی 1:100000 گلگهر سیرجان". سازمان زمینشناسی و اکتشاف معادن کشور، 120 صفحه.
[28] Jafari, A., Karimpour, M. H., Mazaheri, S. A., Shafaroudi, A. M., and Ren, M. (2019). “Geochemistry of metamorphic rocks and mineralization in the Golgohar iron ore deposit (No. 1), Sirjan, SE Iran: Implications for pale tectonic setting and ore genesis”. Journal of Geochemical Exploration, 205: 106-330.
[29] Pyrcz, M. J., and Deutsch, C. V. (2003). “Declustering and debiasing”. Newsletter, 19: 1-14.