[1] David, M. (1977). “Geostatistical ore reserve estimation. Developments in Geomathematics 2”. Am-sterdam: Elsevier, 1: pp. 400.
[2] Chiles, J. P., and Delfiner, P. (2009). “Geostatistics: modeling spatial uncertainty”. John Wiley & Sons, pp. 704.
[3] Armstrong, M. (1998). “Basic linear geostatistics”. Springer Science & Business Media, 1: pp. 160.
[4] Changjiang, L., Zhiming, L., Tuhua, M., and Xingsheng, Z. (2009). “A simple kriging method incorporating multiscale measurements in geochemical survey”. Journal of Geochemical Exploration, 101(2): 147-154.
[5] Reis, A. P., Sousa, A. J., Da Silva, E. F., Patinha, C., and Fonseca, E. C. (2004). “Combining multiple correspondence analysis with factorial kriging analysis for geochemical mapping of the gold–silver deposit at Marrancos (Portugal)”. Applied Geochemistry, 19(4): 623-631.
[6] Jimenez-Espinosa, R., Sousa, A. J., and Chica-Olmo, M. (1993). “Identification of geochemical anomalies using principal component analysis and factorial kriging analysis”. Journal of Geochemical Exploration, 46(3): 245-256.
[7] Panahi, A., Cheng, Q., and Bonham-Carter, G. F. (2004). “Modelling lake sediment geochemical distribution using principal component, indicator kriging and multifractal power-spectrum analysis: a case study from Gowganda, Ontario”. Geochemistry: Exploration, Environment, Analysis, 4(1): 59-70.
[8] Soltani, F., Afzal, P., and Asghari, O. (2014). “Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene zone of Sungun copper deposit, NW Iran”. Journal of Geochemical Exploration, 140: 64-76.
[9] Talesh Hosseini, S., Asghari, O., and Ghavami Riabi, S. R. (2018). “Spatial modelling of zonality elements based on compositional nature of geochemical data using geostatistical approach: a case study of Baghqloom area, Iran”. Journal of Mining and Environment, 9(1): 153-167.
[10] Webber, T., Costa, J. F. C. L., and Salvadoretti, P. (2013). “Using borehole geophysical data as soft information in indicator kriging for coal quality estimation”. International Journal of Coal Geology, 112: 67-75.
[11] Rossi, M. E., and Deutsch, C. V. (2013). “Mineral resource estimation”. Springer Science & Business Media, 1: pp. 337.
[12] Varouchakis, E. A., Kolosionis, K., and Karatzas, G. P. (2016). “Spatial variability estimation and risk assessment of the aquifer level at sparsely gauged basins using geostatistical methodologies”. Earth Science Informatics, 9(4): 437-448.
[13] Pyrcz, M. J., and Deutsch, C. V. (2014). “Geostatistical reservoir modeling”. Oxford University Press, 1: pp. 449.
[14] Rivoirard, J. (1987). “Two key parameters when choosing the kriging neighborhood”. Mathematical Geology, 19(8): 851-856.
[15] Vann, J., Jackson, S., and Bertoli, O. (2003), November. “Quantitative kriging Neighbourhood analysis for the mining geologist-a description of the method with worked case examples”. In 5th International Mining Geology Conference, Bendigo, Australia, Melbourne, Australian Institute of Mining & Metallurgy, 8: 215-223.
[16] Coombes, J. (2008). “The art and science of resource estimation”. A practical Guide for Geologists and Engineers, Coombes Capability, pp. 264.
[17] Emery, X. (2009). “The kriging update equations and their application to the selection of neighboring data”. Computational Geosciences, 13(3): 269-280.
[18] Boyle, C. (2010). “Kriging Neighbourhood analysis by slope of regression and weight of mean–evaluation with the Jura data set”. Mining Technology, 119(2): 49-58.
[19] Shademan Khakestar, M., Madani, H., Hassani, H., and Moarefvand, P. (2013). “Determining the best search Neighbourhood in reserve estimation, using geostatistical method: A case study anomaly No 12A iron deposit in central Iran”. Journal of the Geological Society of India, 81(4): 581-585.
[20] Coombes, J., and Boamah, P. (2015). “Local kriging Neighbourhood optimization”. In Africa Australia Technical Mining Conference, 27-35.
[21] Hundelshaussen, R., Costa, J. F. C. L., Marques, D. M., and Bassani, M. A. A. (2018). “Localised kriging parameter optimization based on absolute error minimization”. Applied Earth Science, 127(4): 153-162.
[22] Madani, N., and Emery, X. (2019). “A comparison of search strategies to design the Cokriging neighborhood for predicting coregionalized variables”. Stochastic Environmental Research and Risk Assessment, 33(1): 183-199.
[23] Yfantis, E. A., Flatman, G. T., and Behar, J. V. (1987). “Efficiency of kriging estimation for square, triangular, and hexagonal grids”. Mathematical Geology, 19(3): 183-205.
[24] Krige, D. G. (1996). “A practical analysis of the effects of spatial structure and of data available and accessed, on conditional biases in ordinary kriging”. Geostatistics Wollongong, 96: 799-810.
[25] Deutsch, J. L., Szymanski, J., and Deutsch, C. V. (2014). “Checks and measures of performance for kriging estimates”. Journal of the Southern African Institute of Mining and Metallurgy, 114(3): 223-223.
[26] Badr, M. J., Masoudi, F., Collins, A. S., and Sorbi, A. (2012). “Mineralogical evidence for regional metamorphism overprinted by contact metamorphism”. Acta Geologica Sinica (English Edition), 86(1): 48-54.
[27] سبزهای، م.؛ 1376؛ "نقشه زمینشناسی 1:100000 گلگهر سیرجان". سازمان زمینشناسی و اکتشاف معادن کشور، 120 صفحه.
[28] Jafari, A., Karimpour, M. H., Mazaheri, S. A., Shafaroudi, A. M., and Ren, M. (2019). “Geochemistry of metamorphic rocks and mineralization in the Golgohar iron ore deposit (No. 1), Sirjan, SE Iran: Implications for pale tectonic setting and ore genesis”. Journal of Geochemical Exploration, 205: 106-330.
[29] Pyrcz, M. J., and Deutsch, C. V. (2003). “Declustering and debiasing”. Newsletter, 19: 1-14.