[1] Hosseini, N. H., and Fatehi, M. M. (2007). “A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting”. Journal of Mechanics of Materials and Structures, 2(3): 439-458.
[2] Fatehi, M. M. (2013). “On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method”. Engineering Fracture Mechanics, 98: 365-382.
[3] Fatehi, M. M. (2014). “Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method”. International Journal of Solids and Structures, 51(9): 1716-1736.
[4] Fatehi, M. M. (2015). “Simulation of crack coalescence mechanism underneath single and double disc cutters by higher order displacement discontinuity method”. Journal of Central South University, 22(3): 1045-1054.
[5] Haeri, H., Khaloo, A., and Fatehi, M. M. (2015). “Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials”. Strength of Materials, 47(5): 740-754.
[6] Abdollahipour, A., Fatehi, M. M., Bafghi, A. Y., and Gholamnejad, J. (2016). “Time-dependent crack propagation in a poroelastic medium using a fully coupled hydromechanical displacement discontinuity method”. International Journal of Fracture, 199(1): 71-87.
[7] Lak, M., Fatehi, M. M., Bafghi, A. Y., and Abdollahipour, A. (2019). “A Coupled Finite Difference-Boundary Element Method for modeling the propagation of explosion-induced radial cracks around a well bore”. Journal of Natural Gas Science and Engineering, 64(1): 41-51.
[8] Cundall, P. A., and Strack, O. D. L. (1979). “A discrete numerical model for granular assemblies”. Geotechnique, 29(1): 47-65.
[9] Cundall, P. A. (1987). “Distinct Element Models of Rock and Soil Structure”. In Brown E. T. (ed.), Analytical and Computational Methods in Engineering Rock Mechanics, London: Allen & Unwin, Ch. 4, 129-163.
[10] Itasca (1999). PFC2D (Particle Flow Code in 2 Dimensions) User's Guide, Itasca Consulting Group, Inc., Minneapolis.
[11] Sarfarazi, V., Haeri, H., and Fatehi, M. M. (2019). “Numerical simulation of the effect of bedding layer on the tensile failure mechanism of rock using PFC2D”. Structural Engineering and Mechanics, 69(1): 43-50.
[12] Haeri, H., Sarfarazi, V., Zhu, Z., Marji, M. F., and Masoumi, A. (2019). “Investigation of shear behavior of soil-concrete interface”. Smart Structures and Systems, 23(1): 81-90.
[13] Bakhshi, E., Rasouli, V., Ghorbani, A., Fatehi, M. M., and Damjanac, B. (2019). “Numerical Simulations of Lab-Scale Hydraulic Fracture and Natural Interface Interaction”. Rock Mechanics and Rock Engineering, 52(5): 1315-1337.
[14] Baazouzi, M. (2016). “2d numerical analysis of shallow foundation rested near slope under inclined loading”. Elsevier, Procedia Engineering, 143: 623-634. DOI: 10.1016/j.proeng.2016.06.086.
[15] Tajeri, Sh. (2015). “Indirect estimation of the ultimate bearing capacity of shallow foundations resting on rock masses”. International Journal of Rock Mechanics & Mining Sciences, Elsevier Ltd., 107–117. DOI: 10.1016/j.ijrmms.2015.09.015.
[16] Fernando, N. (2011). “The Experimental Investigation of Failure Mechanism and Bearing Capacity of Different Types of Shallow Foundation”. Civil Engineering Research for Industry, Department of Civil Engineering, University of Moratuwa.
[17] Castelli, F., and Lentini, V. (2015). “Evaluation of the Bearing Capacity of Footings on Slopes”. International Journal of Physical Modelling in Geotechnics, 15(3): 165-168. DOI: 10.1680/jphmg.14.00038.
[18] Dixit, M. S. (2013). “Experimental Estimate of Ultimate Bearing Capacity and Settlement for Rectangular Footings”. International Journal of Civil Engineering and Technology (IJCIET), 4(2): 337-345.
[19] Mohamed, I. R., and Mohamed, H. H. (2015). “Bearing Capacity of Sand Overlying Clay – Strip Footing”. International Journal of Science and Research (IJSR), 4(2): NOV151560.
[20] Acharyya, R., and Dey, R. (2017). “Finite Element Investigation of the Bearing Capacity of Square Footings Resting on Sloping Ground”. Springer, Indian National Academy of Engineering, 97-10. DOI: 10.1007/s41403-017-0028-6.
[21] Jan, I. I. (1996). “Short descriptions of UDEC and 3DEC”. Developments in Geotechnical Engineering, vol. 79: 523-528. DOI: 10.1016/S0165-1250(96)80041-1.
[22] Waltham, A. C. (2004). “Bearing capacity of rock over mined cavities in Nottingham”. Engineering Geology, 75(1): 15-31. DOI: 10.1016/j.enggeo.2004.04.006.
[23] Wang, J. T. (2011). “Investigation of damping in arch dam-water-foundation rock system of Mauvoisin arch dam”. Soil Dynamics and Earthquake Engineering, 31(1): 33-44. DOI: 10.1016/j.soildyn.2010.08.002.
[24] Souley, M., and Homand, F. (1996). “Stability of jointed rock masses evaluated by UDEC with an extended Saeb-Amadei constitutive law”. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 33(3): 233-244. DOI: 10.1016/0148-9062(95)00063-1.
[25] Zhou, H. Z., Zheng, G., Yu, X. X., Zhang, T. Q., and Liu, J. J. (2018). “Bearing capacity and failure mechanism of ground improved by deep mixed columns”. Journal of Zhejiang University Science A, 19(4): 266-276. DOI: 10.1631/jzus.A1700517.
[26] Bayraktar, A., Sevim, B., and Altunişik, A. C. (2011). “Finite element model updating effects on nonlinear seismic response of arch dam–reservoir–foundation systems”. Finite Elements in Analysis and Design, 47(2): 85-97. DOI: 10.1016/j.finel.2010.09.005.
[27] Eduardo, M., Bretas, P., and Jose, V. (2012). “3D stability analysis of gravity dams on sloped rock foundations using the limit equilibrium method”. Computers and Geotechnics, 44: 147-156. DOI: 10.1016/j.compgeo.2012.04.006.
[28] Lin, Y., Zhu, D., Deng, Q., and He, Q. (2012). “Collapse Analysis of Jointed Rock Slope Based on UDEC Software and Practical Seismic Load”. Procedia Engineering, 31: 441-446. DOI: 10.1016/j.proeng.2012.01.1049.
[29] Kate, J. M., and Nigam, P. K. (2008). “Comparative study of bearing capacity estimates of a footing on jointed rock mass by different approaches”. 12th Conference of IACMAG, 3133-3139.
[30] Meyerhof, G. G. (1953). “Bearing capacity of concrete and rock”. Magazine of Concrete, April. DOI: 10.1680/macr.1953.4.12.107.
[31] Terzaghi, K. (1943). “Theoretical soil mechanics”. 42-65.
[32] Merifield, R. S., Lyamin, A. V., and Sloan, S. W. (2006). “Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek–Brown criterion”. International Journal of Rock Mechanics and Mining Sciences, 43: 920-937. DOI: 10.1016/j.ijrmms.2006.02.001.
[33] Prakoso, W. A., and Kulhawy, F. H. (2004). “Bearing Capacity of Strip Footings on Jointed Rock Masses”. Journal of Geotechnical & Geoenvironmental Engineering, 130(12): 1347-1349. DOI: 10.1061/10900241130.
[34] Saada, Z., Maghous, S., and Garnier, D. (2008). “Bearing capacity of shallow foundations on rocks obeying a modified Hoek–Brown failure criterion”. Computers and Geotechnics, 35(2): 144- 154. DOI: 10.1016/j.compgeo.20.06.003.
[35] Serrano, A., and Olalla, C. (1998). “Ultimate bearing capacity of an anisotropic discontinuous rock mass, Part I: Basic modes of failure”. International Journal of Rock Mechanics and Mining Sciences, 35(3): 301- 324. DOI: 10.1016/S0148-9062(97)00337-9.
[36] Singh, M., and Rao, K. S. (2005). “Bearing Capacity of Shallow Foundations in Anisotropic NonHoek–Brown Rock Masses”. Journal of Geotechnical & Geoenvironmental Engineering, 131(8): 1014-1023. DOI: 10.1061/(ASCE)1090-0241.
[37] Sutcliffe, D. J., Yu, H. S., and Sloan, S. W. (2004). “Lower bound solutions for bearing capacity of jointed rock”. Computers and Geotechnics, 31: 23-36. DOI: 10.1016/j.compgeo.2003.11.001.
[38] Yang, X. L., and Yin, J. H. (2005). “Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion”. International Journal of Rock Mechanics and Mining Sciences, 42: 550- 560. DOI: 10.1016/j.ijrmms.2005.03.002.
[39] Vesic, A. S. (1973). “Analysis of Ultimate Loads of Shallow Foundations”. Journal of the Soil Mechanics and Foundations Division, 99(1): 45-73. DOI: 10.1016/0148-9062(74)90598-1.