Estimation of Drilling Machine Production Rate Based on Properties of Rock and System Parameters by Prediction of Bit Penetration Speed

Document Type : Research - Paper

Authors

1 M.Sc, Dept. of Mining Engineering, Sirjan Branch, Islamic Azad University, Sirjan, Iran

2 Assistant Professor, Dept. of Mining Engineering, Baft Branch, Islamic Azad University, Baft, Iran

Abstract

Drilling a certain number of blast holes per hour plays an important role in reaching the required annual mine production. Since, the proper use of the availability time of machine to drill the maximum number of blast holes is crucial. The drilling rate of blast holes is affected by various factors such as rock properties and system parameters. Thus, recognizing the effectiveness of these factors on the penetration rate of bit (PR), not only machine production can be increased but also drilling and blasting costs can be reduced in the mine. In this study to predict the PR in the selected mine, firstly, parameters of 91 holes related to 28 blasting block and in 9 various extracting benches were collected. Secondly, the sensitivity rate related to each of the independent parameters on the PR was studied using Cosine Amplitude Method (CAM). Finally, three models including non-linear multivariate regression (NLMR), artificial neural network (ANN), and fuzzy logic were produced to predict the PR. These models were validated using 12 series of data tests. It was shown that with a coefficient of determination of 0.68 and mean absolute percentage error (MAPE) of 12.15, the ANN model could predict the PR with a slightly higher precision compared to NLMR.

Keywords


[1] Thuro, K. (1997). “Drillability prediction:Geological influences in hard rock drill and blast tunneling”. International Journal of Earth Sciences, 86(2): 426-438.
[2] Hoseini, S. H., and Ataei, M. (2007). “A review of machine parameters influencing the drilling rate in mines”. 7th International Scientific Conference-(SGEM), Conference proceedings, ISBN:954-918181-2, June 11-15.
[3] Inanloo Arabi Shad, H., Sereshki, F., Ataei, M., and Karamoozian, M. (2018). “Prediction of rotary drilling penetration rate in iron ore oxides using rock engineering system”. International Journal of Mining Science and Technology, 28(3): 407-413.
[4] Ataei, M., KaKaie, R., Ghavidel, M., and Saeidi, O. (2015). “Drilling rate prediction of an open pit mine using the rock mass drillability index”. International Journal of Rock Mechanics & Mining Sciences, 73: 130-138.
[5] حسینی، س. ه.، آقابابایی، ح.، پوررحیمیان، ی.؛ 1386؛ "بررسی و مدلسازی تأثیر شیبداری درزهها بر سرعت چالزنی در معادن روباز". فصلنامه علوم زمین، سازمان زمینشناسی و اکتشافات معدنی ایران، دوره 16، شماره 63، ص 92-86.
[6] Kahraman, S., Bilgin, N., and Feridunoglu, C. (2003). “Dominant rock properties affecting the penetration rate of percussive drills”. International Journal of Rock Mechanics and Mining Sciences, 40(5): 711-723.
[7] Kahraman, S., Balci, C., Yazici, S., and Bligin, N. (2000). “Prediction of the penetration rate of rotary blast hole drilling using a new drillability index”. International Journal of Rock Mechanics and Mining Sciences, 37(5): 729-743.
[8] Kahraman, S. (1999). “Rotary and percussive drilling prediction using regression analysis”. International Journal of Rock Mechanics and Mining Science, 36(7): 981-989.
[9] Yarali, O., and Soyer, E. (2011). “The effect of mechanical rock properties and brittleness on drillability”. Scientific Research and Essays, 6(5): 1077-1088.
[10] Yarali, O., and Kahraman, S. (2011). “The drillability assessment of rocks using the different brittleness values”. Tunnelling and Underground Space Technology, 26(2): 406-414.
[11] قویدل، م.؛ 1390؛ "طبقهبندی قابلیت حفاری تودهسنگها و پیشبینی سرعت حفاری در معدن سنگ آهن گلگهر". پایان نامه کارشناسی ارشد مهندسی استخراج معدن، دانشکده مهندسی معدن، دانشگاه صنعتی شاهرود.
[12] Hoseini, S. H., Aghababaei, H., and Pourrahimian, Y. (2008). “Development of a new classification system for assessing of rock mass drillability index (RDi)”. International Journal of Rock Mechanics and Mining Sciences, 45(1): 1-10.
[13] Iphar, M., and Goktan, R. M. (2006). An application of fuzzy sets to the Diggability index rating method for surface mine equipment selection. International Journal of Rock Mechanics & Mining Sciences, 43(2): 253-266.
[14] Cheniany, A., Khoshrou, S. H., Shahriar, K., and Hamidi Jafar, KH. (2012). “An estimation of the penetration rate of rotary drills using the specific rock mass drillability index”. International Journal of Mining Science and Technology, 22: 187-193.
[15] Xiao, Y., Hurich, CH., and Butt, S. D. (2018). “Assessment of rock-bit interaction and drilling performance using elastic waves propagated by the drilling system”. International Journal of Rock Mechanics and Mining Sciences, 105: 11-21.
[16] Ataei, M., Mikaeil, R., Hoseinie, S. H., and Hosseini, S. M., (2012). “Fuzzy analytical hierarchy process approach  for ranking the sawability of carbonate rock”. International Journal of Rock Mechanics and Mining Sciences, 50: 83-93. 
[17] Plinninger, R., Spaun, G., and Thuro, K. (2002). “Predicting tool wear in drill and blast”. Tunnel & Tunnelling International Magazine, 34: 1-5.
[18] Monjezi, M., Rezaei, M., and Yazdian, A. (2010). “Prediction of backbreak in open-pit blasting using fuzzy set theory”. Expert System with Applications, 37(3): 2637-2643.
[19] Yang, Y., and Zang, O. (1997). “A hierarchical analysis for rock engineering using artificial neural networks”. Rock Mechanics and Rock Engineering, 30(4): 207-222.
[20] Samareh, H., Khoshrou, S. H., Shahriar, K., Ebadzadeh, M. M., and Eslami, M. (2017). “Optimization of a nonlinear model for predicting the ground vibration using the combinational particle swarm optimization-genetic algorithm”. Journal of African Earth Sciences, 133: 36-45.
[21] Khandelwal, M., Armaghani, D. J., Faradonbeh, R.S., Ranjith, P., and Ghoraba, S. (2016). “A new model based on gene expression programming to estimate air flow in a single rock joint”. Environmental Earth Sciences, 75: pp. 739. DOI 10.1007/s12665-016-5524-6.
[22] Monjezi, M., Faradonbeh, R. S., and Armaghani, D. J. (2016). “Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation”. Engineering with Computers, 32: 123-133.
[23] بشلیده، ک.؛ 1391؛ "روشهای پژوهش و تحلیل آماری". انتشارت دانشگاه شهید چمران اهواز، 654 صفحه.
[24] نیرومند، ح. ع.؛ 1384؛ "تحلیل رگرسیون". انتشارت دانشگاه فردوسی مشهد، 604 صفحه.
[25] اصانلو، م.؛ 1386؛ "روشهای حفاری". نشر صدرا، ویرایش سوم، 494 صفحه.
[26] شریف زاده، م.، نورانی، ر.؛ 1390؛ "خواص و رفتار مهندسی سنگها". ترجمه، مرکز نشر صدا، فصل 6، 204 صفحه.
[27] فاروق حسینی، م.؛ 1376؛ "درآمدی بر مکانیک سنگ". تالیف، مرکز خدمات فرهنگی سالکان، فصل 3، 45 صفحه.