Investigating the Absorption Behavior of Plants Selected from Darreh-Zereshk Copper Mine for Phytoremediation purposes

Document Type : Research - Paper

Authors

1 M.Sc Student, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran

2 Associate Professor, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran

Abstract

The purpose of this research was to study various plant species  and to model the absorption behavior  thereof in relation to the various elements in and around of Darreh Zereshk Copper Mine to find the most suitable indigenous species for phytoremediation study. The goal is reducing the impacts and environmental pollution of the pollutant elements. For this purpose, 36 plant samples (including 17 different species) and 32 soil samples (in two different size fractions) were taken. After preparation and application of different digestion methods, the samples were analyzed by atomic absorption method for copper, iron and lead elements. By using four different solvent extraction methods, the absorption behavior of the plants was modeled and the best method was identified as extracted by organic solvent EDTA. This solvent could better detect the absorption behavior of the plants and distinguish contaminated areas from virgin and non-contaminated areas. The soil with smaller size fraction is more enriched of the metals and the copper presented in this fraction is absorbed by the solvent at higher concentrations. This suggests that the fine particles of the soil scavenged a higher content of metal by absorption property. By calculating the bioconcentration factor, the absorption behavior of different plant species was compared in contaminated and non-contaminated areas, and accordingly, the species of “Hertia Angustifolia” , “Glycyrrhiza Globra” and “Euphorbia” were identified as accumulator species and “Tamarix”, “Alhagi”, “Astragalus” and”Artemisia Sieberi Besser” determined as hyper-excluder species. “Hertia Angustifolia” species has a fairly good abundance in the region, therefore it can be introduced and used as an indigenous indicator species for the purpose of phytoremediation.

Keywords


[1]     Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., and Raskin, I. (1995). “Phytoremediation: A novel Strategy for the Removal of Toxic Metals from the Environment Using Plants”. Biotechnology, 13(5): 468-474.
[2]     Chaoua, S., Boussaa, S., El Gharmali, A., and Boumezzough, A. (2018). “Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco”. Journal of the Saudi Society of Agricultural Sciences, 18(4): 429-436. https://doi.org/10.1016/j.jssas.2018.02.003.
[3]     Woodford, C. (2019). “Land pollution”. Retrieved from https://www.explainthatstuff.com/land-pollution.html, Accessed 29 January 2019.
[4]     Cameselle, C., and Gouveia, S. (2019). “Phytoremediation of mixed contaminated soil enhanced with electric current”. Hazardous Materials, 361: 95-102.
[5]     McLaughlin, M. J., Parker, D. R., and Clarke, J. M. (1999). “Metals and micronutrients—food safety issues”. Field Crop Res, 60: 143–63.
[6]     Hamilton, E. I. (1995). “State of the art of trace element determinations in plant Matrices, determination of the chemical elements in plant matrices, an overview”. Science Total Environ,176: 3-14.
[7]     Sardans, J., and Penuelas, J. (2006). “Inrtoduction of The Factor of Partitioning in The Lithogenic Enrichment Factors of Trace Element Bioaccumulation in Plant Tissues”. Environmental Monitoring and Assessment, 115: 473–498.
[8]     Brooks, R. R. (1994). “In Plants and Chemical Elements: Biochemistry, Uptake, Tolerance and Toxicity”. Ed. Gargo, M. E., VCH Verlagsgesellsschaft, Weinheim, Germany, 88-105.
[9]     Zarasvandi, A., Liaghat, S., and Zentilli, M. (2005). “geology of the Darreh-Zerreshk and Ali-Abad Porphyry Copper Deposits, Central Iran”. International Geology Review, 47: 620–646.
[10]  Henry, J. R. (2000). “In an Overview of Phytoremediation of Lead and Mercury”. NNEMS Report. Washington, D.C., 3-9.
[11]  جهانبخشی، ش.، رضایی، م. ر.، محمدحسن سیاری زهان، م. ح.؛ 1393؛"مقایسهتاثیر گیاهپالاییشاهیواسفناجدر خاکهایآلودهبهکادمیوموکروم". علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، سال هجدهم، شماره 70، ص 11-1.
[12]  بابائیان، ا.، همایی، م.، راهنمایی، ر.؛ 1391؛"افزایش کارایی استخراج گیاهی سرب از خاک به وسیله هویج با کاربرد کیلیتهای طبیعی و سنتزی". آب و خاک (علوم و صنایع غذایی)، جلد 26، شماره 3، ص 618-607.
[13]  کمال‌پور، س.، متشرع زاده، ب.، علیخانی، ح.، زارعی، م.؛ 1392؛"بررسیتاثیربرخیعواملزیستیبرگیاه پالاییسربوجذبفسفر توسطاکالیپتوس (Eucalyptus camaldulensis)". جنگل ایران، انجمن جنگلبانی ایران، جلد پنجم، شماره 4، ص 457-470.
[14]  اکبرپور سراسکانرود، ف.، صدری، ف.، گل‌علیزاده، د.؛ 1391؛ "گیاهپالایی خاکهای آلوده به برخی فلزات سنگین به وسیله چند گیاه بومی منطقه حفاظت شده ارسباران". حفاظت از منابع آب و خاک، دوره یکم، شماره 4، ص 66-53.
[15]  نیسی، ع.، وثوقی، م.، محمدی، ب.، محمدی، م. ج.، نعیم آبادی، ا.، هاشم زاده، ب.؛ 1393؛"گیاهپالاییفلزاتسنگینتوسطگیاهآفتابگردان: یکمطالعهمروری". دانشگاه علوم پزشکی تربت حیدریه، جلد دوم، شماره 2، ص 65-55.
[16]  Chandrasekhar, C., and Ray, J. G. (2019). “Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate”. Ecotoxicology and Environmental Safety, 171: 26-36.
[17]  Banerjee, B., Goswami, P., Pathak, K., and Mukherjee, A. (2016). “Vetiver grass: An environment clean-up tool for heavy metalcontaminated iron ore mine-soil”. Ecological Engineering, 90: 25-34.
[18]  Nabavi, M. H. (1972). “Geologic map of Yazd quadrangle, scale 1:250,000: Tehran, Iran”. Geological Survey of Iran.
[19]  Zarasvandi, A., Liaghat, S., and Zentilli, M. (2004). “Evolution of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, central Iran, within an orogen-parallel strike-slip system [abs.]”. In 30th Annual Meeting of Atlantic Geoscience Society. January 30–31, Moncton, New Brunswick, Canada, pp. 36.
[20]  Dunn, C. E. (2007). “Biogeochemistry in Mineral Exploration”. Handbook of Exploration and Environmental Geochemistry, 1–460.
[21]  Furr, k. Ed., (1999). “Analytical Methods for Atomic Absorption Spectroscopy”. CRC Handbook of Laboratpry Safety, 3rd Ed., The Chemical Rubber Co. Press, Florida, USA.
[22]  Järup, L. (2003). “Hazards of heavy metal contamination”. British Medical Bulletin, 68(1): 167-82.
[23]  Angelova, V. R., Ivanova, R. V., Todorov, J. M., and Ivanov, K. I. (2010). “Lead, Cadmium, Zinc, and Copper Bioavailability in the Soil Plant-Animal System in a Polluted Area”. The Scientific World Journal, 10: 273–285.
[24]  Fitz, W. J., Wenzel, W. W., Johan, N., Tipek, K., Ma, L., and Stingerd, G. (2003). “Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency”. Environmental Science & Technology, 37: 5008-5014.
[25]  Chojnackaa, K., Chojnackib, A., Go´ reckab, H., and Go´ reckib, H. (2005). “Bioavailability of heavy metals from polluted soils to plants”. Science of The Total Environment, 337: 175-182.
[26]  رضائی، س.، تراب، ف.؛ 1397؛ "مقایسه هالههای بیوژئوشیمیایی و لیتوژئوشیمیایی ثانویه به منظور اکتشاف ذخایر مس و تحلیل خطای مراحل مختلف آمادهسازی و آنالیز نمونهها در منطقه معدنی دره زرشک". پژوهش‌های دانش زمین، شماره 36، ص 49-66.
[27]   محمد بابا اکبری ساری، م.، فرحبخش، م.، ثواقبی، غ. ر.، نجفی، ن.؛ 1392؛ "بررسی غلظتآرسنیک دربرخیخاکهایآهکی قروهوجذبآنبهوسیلهذرت،گندموکلزا دریک خاکآلودهطبیعی". دانش آب و خاک، شماره 23، ص 17-1.
[28]  ابراهیمی، ن.، کریمی، م.، شاکری، ع.؛ 1392؛ "ژئوشیمی زیستمحیطی عناصر(As, Cd, Mo,Pb, Zn) در نمونههای خاک و گیاه محدوده معدن مس دره زرشکیزد". دومین همایش ملی حفاظت و برنامه‌ریزی محیط‌‌زیست، همدان، شرکت هم اندیشان محیط زیست فردا، 9 صفحه.
[29]  حسنی پاک، ع. ا.؛ 1362؛ "اصول اکتشافات ژئوشیمیایی". انتشارات دانشگاه تهران، 615 صفحه.