[1] Habashi, F. (1997). “Handbook of Extractive Metallurgy”. In VCH, Weinheim, Chapter 3, Vol. 2 Wiley, 125-145.
[2] Chekmarev, A. M., Troshkina, I. D., Nesterov, Y. V., Maiboroda, A. B., Ushanova, O. N., and Smirnov, N. S. (2004). “Associated rhenium extraction in complex processing of productive solutions of underground uranium leaching”. Chemistry for Sustainable Development, 12: 113-117.
[3] Maria-Ondina, F., and Daniel, D. O. (2013). “Molybdenite as a rhenium carrier: first results of a spectroscopic approach using synchrotron radiation”. Journal of Minerals and Materials Characterization and Engineering, 1: 207.
[4] Watanabe, M., and Soeda, A. (1981). “Distribution of polytype contents of molybdenites from Japan and possible controlling factor in polytypism”. Neues Jahrbuch Fur Mineralogie-Abhandlungen, 141: 258-279.
[5] Newberry, R. (1979). “Polytypism in molybdenite (II); Relationships between polytypism, ore deposition/alteration stages and rhenium contents”. American Mineralogist, 64: 768-775.
[6] Berzina, A. N., Sotnikov, V. I., Economou-Eliopoulos, M., and Eliopoulos, D. G. (2005). “Distribution of rhenium in molybdenite from porphyry Cu–Mo and Mo–Cu deposits of Russia (Siberia) and Mongolia”. Ore Geology Reviews, 26: 91-113.
[7] Nebeker, N., and Hiskey, J. B. (2012). “Recovery of rhenium from copper leach solution by ion exchange”. Hydrometallurgy, 125: 64-68.
[8] Lan, X., Liang, S., and Song, Y. (2006). “Recovery of rhenium from molybdenite calcine by a resin-in-pulp process”. Hydrometallurgy, 82: 133-136.
[9] Jermakowicz-bartkowiak, D., and Kolarz, B. N. (2016). “Rhenium recovery from acidic solution on functionalized resins”. Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw,73: 132-138.
[10] Fouladgar, M., Beheshti, M., and Sabzyan, H. (2015). “Single and binary adsorption of nickel and copper from aqueous solutions by γ-alumina nanoparticles: Equilibrium and kinetic modeling”. Journal of Molecular Liquids, 211: 1060-1073.
[11] Lee, I.-H., Kuan, Y.-C., and Chern, J.-M. (2007). “Equilibrium and kinetics of heavy metal ion exchange”. Journal of the Chinese Institute of Chemical Engineers, 38: 71-84.
[12] Senthilkumar, G., and Murugappan, A. (2015). “Multicomponent Adsorption Isotherm Studies on Removal of Multi Heavy Metal Ions in MSW Leachate using Fly Ash”. International Journal of Engineering Research & Technology (IJERT), 4: 8.
[13] Fathi, M. B., Rezai, B., Keshavarz Alamdari, E., and Alorro, R. D. (2018). “Equilibrium modeling in adsorption of Re and Mo ions from single and binary aqueous solutions on Dowex 21K resin”.Geosystem Engineering, 21: 73-80.
[14] Joo, S.-H., Kim, Y.-U., Kang, J.-G., Kumar, J. R., Yoon, H.-S., Parhi, P., and Shin, S. M. (2012). “Recovery of Rhenium and Molybdenum from Molybdenite Roasting Dust Leaching Solution by Ion Exchange Resins”. Materials Transactions, 53: 2034-2037.
[15] Nur, T., Loganathan, P., Nguyen, T., Vigneswaran, S., Singh, G., and Kandasamy, J. (2014). “Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: Solution chemistry and modeling”. Chemical Engineering Journal, 247: 93-102.
[16] Xiong, C., Xiaozheng, L., and Caiping, Y. (2008). “Effect of pH on sorption for RE (III) and sorption behaviors of Sm (III) by D152 resin”. Journal of Rare Earths, 26: 851-856.
[17] Xiong, C., and Yao, C. (2010). “Adsorption behavior of MWAR toward Gd (III) in aqueous solution”. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 29: 59-66.
[18] Sparks, D. L. (2003). “Environmental soil chemistry”. 2nd ed. Academic Press, San Diego, CA, 13-75.
[19] Kadirvelu, K., Goel, J., and Rajagopal, C. (2008). “Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent”. Journal of Hazardous Materials, 153: 502-507.
[20] Fathi, M. B., Rezai, B., and Alamdari, E. K. (2017) “Competitive adsorption characteristics of rhenium in single and binary (Re-Mo) systems using Purolite A170”. International Journal of Mineral Processing, 169: 1-6.
[21] Xiong, C., Yao, C., and Wu, X. (2008). “Adsorption of rhenium (VII) on 4-amino-1, 2, 4-triazole resin”. Hydrometallurgy, 90: 221-226.
[22] Hubicki, Z., and Kołodyńska, D. (2012). “Selective removal of heavy metal ions from waters and waste waters using ion exchange methods”. Ion Exchange Technologies, 193-240.
[23] Günay, A., Arslankaya, E., and Tosun, I. (2016). “Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics”. Journal of Hazardous Materials, 146: 362-371.
[24] Liu, J., and Wang, X. (2013). “Novel silica-based hybrid adsorbents: lead (II) adsorption isotherms”.The Scientific World Journal, pp. 6. DOI: http://dx.doi.org/10.1155/2013/897159.
[25] Singha, B., and Das, S. K. (2013). “Adsorptive removal of Cu (II) from aqueous solution and industrial effluent using natural/agricultural wastes”. Colloids and Surfaces B: Biointerfaces, 107: 97-106.
[26] Wu, F.-C., Tseng, R.-L., and Juang, R.-S. (2009). “Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics”. Chemical Engineering Journal, 153: 1-8.
[27] Fil, B. A., Boncukcuoğlu, R., Yilmaz, A. E., and Bayar, S. (2012). “Adsorption of Ni (II) on ion exchange resin: Kinetics, equilibrium and thermodynamic studies”. Korean Journal of Chemical Engineering, 29: 1232-1238.
[28] Okewale, A., Babayemi, K., and Olalekan, A. (2013). “Adsorption isotherms and kinetics models of starchy adsorbents on uptake of water from ethanol–water systems”. International Journal of Applied, 3(1): 28.
[29] Igwe, J., and Abia, A. (2006). “A bioseparation process for removing heavy metals from waste water using biosorbents”. African Journal of Biotechnology, 5(11): 1167-1179.
[30] Qiu, H., Lv, L., Pan, B.-c., Zhang, Q.-j., Zhang, W.-m., and Zhang, Q.-x. (2009). “Critical review in adsorption kinetic models”. Journal of Zhejiang University Science A, 10: 716-724.
[31] Lou, Z., Zhao, Z., Li, Y., Shan, W., Xiong, Y., Fang, D., Yue, S., and Zang, S. (2013). “Contribution of tertiary amino groups to Re (VII) biosorption on modified corn stalk: Competitiveness and regularity”. Bioresource Technology, 133: 546-554.
[32] Xiong, Y., Xu, J., Shan, W., Lou, Z., Fang, D., Zang, S., and Han, G. (2013). “A new approach for rhenium (VII) recovery by using modified brown algae Laminaria japonica adsorbent”. Bioresource Technology, 127: 464-472.