Investigation Of Iron Removal In 0-3 Mm Processing Circuit Of Semirom Fireclay Plant

Authors

1 Assistant Professor, Mining and Metallurgical Engineering Department, Yazd University, Yazd, Iran

2 Assistant Professor, Mining Technologies Research Center, Yazd University, Yazd, Iran

3 M.Sc, Mineral Processing, Mining and Metallurgical Engineering Department, Yazd University, Yazd, Iran

Abstract

In this research, the monitoring and modification of the 0-3 mm processing circuit of the Semirom fireclay factory were investigated. The characterization results show kaolinite is the main mineral, while hematite and goethite are the iron minerals. Study of the polished sections and freedom analysis demonstrated that most of the hematite had been oxidized to goethite and spread in kaolinite particles. This circuit was monitored by sampling from different streams. The effect of parameters including feed rate, separator speed, and particle size, on iron removal, was investigated using a dry drum separator. Experiments with a roller separator with a magnetic field intensity of 10 kilogauss were performed to measure the possibility of further iron removal. According to the results of the experiments and the monitoring of the circuit, a new flowsheet was proposed by adding the roller separators to process the tailing of the first series of the plant separators as well as the final product, which allows the reduction of Fe2O3 grade to less than 1% and 5% increase in recovery in the final product.

Keywords

Main Subjects


[1]   Kogel, J. E., Trivedi, N. C., Barker, J. M., and Krukowski, S. T. (Eds.). (2006). “Industrial minerals & rocks: commodities, markets, and uses”. SME, 407-409.‏
[2]   اولیازاده، م.؛ 1385؛ "فرآوری و کاربرد کانیهای صنعتی". انتشارات جهاد دانشگاهی واحد صنعتی امیر کبیر، ص 185-171.
[3]     Yu, J., Wang, D., Ge, X., Yan, M., and Yang, M. (2006). “Flocculation of kaolin particles by two typical polyelectrolytes: A comparative study on the kinetics and floc structures”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290(1-3): 288-294.‏
[4]   King, R. P. (2012). “Modeling and simulation of mineral processing systems”. Elsevier, 269-288.‏
[5]     مقدسی، س. ج.؛ 1388؛ "مینرالوگرافی(کانه نگاری)". دانشگاه پیام نور، ص 231.
[6]     فیروزی، ع.، صمدزاده یزدی، م. ر.، مجتهدزاده، ح.؛ 1396؛ "مطالعه کانی شناسی و درجه آزادی کانیهای حاوی آهن در خاک نسوز سمیرم". بیست و پنجمین همایش بلور شناسی و کانی شناسی ایران، دانشگاه یزد، ص 951-941.
[7]   Tripathy, S. K., Singh, V., Murthy, R., Banerjee, P. K., and Suresh, N. (2017). “Influence of process parameters of dry high intensity magnetic separators on separation of hematite”. International Journal of Mineral Processing, 160: 16-31.
[8]     Parker, M. R. (1977). “The physics of magnetic separation”. Contemporary Physics, 279-306.
[9]     Mostika, Y. S., Karmazin, V. I., Shutov, V. Yu., and Grebenyuk, L. Z. (1999). “About the equations of motion of a magnetic particle in a magnetic separator”. Physical Separation in Science and Engineering, 10: 35-44.
[10]  Birss, R., Parker, M., and Wong, M. (1979). “Modeling of fields in magnetic drum separators”. IEEE Transactions on Magnetics, 1305-1309.
[11]   رضایی،ب.؛ 1378؛ "تکنولوژی فرآوری مواد معدنی (پرعیار سازی به روش مغناطیسی)". مرکز نشردانشگاه صنعتی امیرکبیر، ص 35-27.
[12]  Gerber, R., and Birss, R. R. (1983). “High gradient magnetic separation”. Research Studies Press Div. of John Wiley & Sons, Ltd., pp. 209.
[13]  Veerendra, S., Nag, S., and Tripathy, S. K. (2013). “Particle flow modeling of dry induced roll magnetic separator”. Powder Technology, 244: 85-92.