[1] Chiromaa, H., Abdulkareema, S., and Herawanb, T. (2015). “Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction”. Applied Energy, 142: 266–273.
[2] Cox, J. C., Ross, S. A., and Rubinstein, M. (1979). “Option Pricing: A Simplified Approac”. Journal of Financial Economics, 7: 229-263.
[3] Gao, S., and Lei, Y. (2017). “A new approach for crude oil price prediction based on stream learning”. Geoscience Frontiers, 8: 183-187.
[4] Luo, H., Liu, X., and Wang, S. (2017). “Based on SARIMA-BP hybrid model and SSVM model of international crude oil price prediction research”. ANZIAM journal, 58: 143-161.
[5] Wang, M., Tian, L., and Zhou, P. (2018). “A novel approach for oil price forecasting based on data fluctuation network”. Energy Economics, 71: 201-212.
[6] www.infomine.com/opec price, Comprehensive information on mining, the mining industry, mining technology and mineral exploration, the price and cost of the metals or mining activities.
[7] Zhang, W., Yin, M., and Luo, N. (2016). “Forecasting Crude Oil Price Using a Hybrid Model by Bidirectional Extreme Learning Machine”. Transylvanian Review, 24: 140-148.
[8] Zhao, Y., Li, J., and Yu, L. (2017). “A deep learning ensemble approach for crude oil price forecasting”. Energy Economics, 66: 9-16.
[9] نیرومند، ح. ع.؛ 1389؛"تجزیه وتحلیل سریهایزمانی". دانشگاه فردوسی مشهد، ص 408.
[10] منهاج، م.؛ 1373؛"مبانی شبکههای عصبی". انتشارات دانشگاه صنعتی امیرکبیر تهران، ص 716.