[1] Horri, H., and Nemat-Nasser, S. (1986). “Brittle failure in compression : splitting, faulting and brittle ductile transition”. Mathematical & Physical Science, 319: 337-374.
[2] Deng, H., and Nemat-Nasser, S. (1992). “Dynamic damage evolution in brittle solids”. Mechanics of Materials, 14: 83-103.
[3] Yang, R., Bawdens, W. F., and Katsabaniss,P. D. (1996). “A new constitutive model of blast damage”. International Journal of Rock Mechanics and Mining Science & Geomechanics, 33: 245-254.
[4] Zhang, Y., Yong, L., and Guowei, M. (2006). “Investigation of dynamic response of brittle materials under high-rate loading”. Mechanics Research Communications, 33: 359-369.
[5] Chengqing,W., Yong, L., and Hong, H. (2004). “Numerical prediction of blast-induced stress wave from large-scale underground explosion”. International Journal for Numerical and Analytical Methods in Geomechanics, 28: 93-109.
[6] Paliwal, B., and Ramesh, K. T. (2008). “An interacting micro-crack damage model for failure of brittle materials under compression”. Journal of the Mechanics and Physics of Solids, 56: 896-923.
[7] Junwei, L. (2015). “Micro-mechanical Modeling of Brittle Materials under Dynamic Compressive Loading”. PhD Thesis, The Johns Hopkins University.
[8] Qi, M., Shao, J. F., Giraud,A., Zhu,Q. Z., and Colliat,J. B. (2016). “Damage and plastic friction in initially anisotropic quasi brittle materials”. International Journal of Plasticity, 82: 260-282.
[9] Zhou, X. P., and Yang, H. Q. (2007). “Micromechanical modeling of dynamic compressive responses of mesoscopic heterogenous brittle rock”. Theoretical and Applied Fracture Mechanics, 48: 1–20.
[10] Hu, G., Liu, L., Graham-Brady, L., and Ramesh, K. T. (2014). “A 3d mechanistic constitutive model for brittle materials containing evolving flaw distributions under dynamic multiaxial loading”. Journal of Mechanics and Physics of Solids, 78: 269-297.
[11] Katcoff, C., and Graham-Brady, L. (2014). “Modeling dynamic brittle behavior of materials with circular flaws or pores”. International Journal of Solids and Structures, 51: 754-766.
[12] Marji, M. F., Hosseini-Nasab, H., and Kohsary, A. H. (2007). “A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis”. Journal of Solids and Structures, 1: 61-91.
[13] Gross, D., and Seeling, T. (2011). “Fracture mechanics with an introduction to micromechanics”. Springer, Springer Heidelberg Dordrecht London.
[14] ملاداودی،ح.؛ 1394؛ "مدلسازی خرابی ریزمکانیکی در محیط نرمافزار UDEC برای تحلیل رفتار سنگهای تحت ریزترکهای باز". نشریه علمی پژوهشی مهندسی معدن، دوره دهم، شماره 28، صفحه 81-67.
[15] Zhu, Q. Z., Kondo, D., and Shao, J. F. (2008). “Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: Role of the homogenization scheme”. International Journal of Solids and Structures, 45: 1358-1405.
[16] Hosseini-Nasab, H., and Marji, M. F. (2007). “A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting”. Journal of Mechanics of Materials and Structures, 2: 439-458.
[17] Abdollahipour, A., Marji, M. F., YarahmadiBafghi, A., and Gholamnejad, J. (2015). “Simulating the propagation of hydraulic fractures from a circular well bore using the displacement discontinuity method”. International Journal of Rock Mechanics & Mining Sciences, 80: 281-291.
[18] Andrew, L., Tnoge, L., and Ramesh, K. T. (2015). “multi-scale defect interaction in high-rate failure of brittle materials, part II: Application to design of protection materials”. Journal of the Mechanics and Physics of Solids, 58: 692-701.