Predicting gold grade in Tarq 1:100000 geochemical map using the behavior of gold, Arsenic and Antimony by K-means method

Authors

1 Ph.D Candidate in Mining Engineering, Shahrood University of Technology

2 Ph.D Candidate in Mining Engineering, Amirkabir University of Technology

3 Full Professor, Amirkabir University of Technology

Abstract

The studied area could be found in Tarq 1:100000 Geochemicalmap. Initial geochemical investigation is done by Iran Geological Survey and Mineral Exploration (IGS) using stream sediments analysis method. This district mainly is covered by Precambrian to Quaternary Rocks. The geochemistry of the gold mineralization seems to be very important with regard to the sign of gold mineralization. Based on this aim, it is important to find the relationship of geochemical behavior of Au, As and Sb within the reported geochemical halo to determine both promising areas and gold estimated grade. To achieve this goal, K-means which is a powerful method has been applied. K-means is a clustering method based on minimizing sum of Euclidean distances of each sample from their own group centers. Here, the clustering quality function (S(i)) and the desirability of the cluster are used to find the optimized number of clusters. Finally, by taking into account the cluster centers and the results concerned, equations were presented for the prediction of the amount of the gold element in terms of four parameters: arsenic, antimony, X and Y associated to the sampling points. Also shown are the correlation coefficient of its validation equal to 72. The superiority of the results of the behavioral measurement of the elements related to this method were compared to the correl

Keywords


[1]     مجیدی‏ فر، س.، 1392؛ "تخمین عیار آهن در آنومالی تپه قرمز معدن سنگ آهن سنگان با استفاده از سه الگوریتم فازی عصبی تطبیقی". مجله علمی-پژوهشی روشهای تحلیلی و عددی در مهندسی معدن،  دوره 3، شماره 5، ص 17-10.
[2]     عباس ‏زاده، س.؛ رحیمی ‏پور، ق.؛ نجم الدینی، م.؛ 1393؛ "شناسایی مناطق کانی زایی مس پورفیری با استفاده از تلفیق روش‌های تک متغیره و چند متغیره بر روی داده های ژئوشیمیایی آبراهه ای در منطقه قلعه عسکر". استان کرمان ، دوره3، شماره 3، ص 69-82.
[3]     شایسته ‏فر، م.ر.؛ رسا، ا.؛ 1384؛ "تحلیل داده های چند متغیره کانسار سرب و روی قنات مروان کرمان". مجله علوم زمین، دوره 15، شماره 57، ص 134-145.
[4]     Malyszko, D., and Wierzchon, S. T. (2007). “Standard and Genetic K-means Clustering Techniques in Image Segmentation”. In 6th International Conference on Computer Information Systems and Industrial Management Applicatins, 1-9.
[5]     Abolhassani, B., and Salt, J. E. (2005). “A Simplex Kmeans Algorithm for Radio-Port Placement in Cellular Networks”. In Canadaian Conference on Electrical and Computer Engineering, 25-34.
[6]     Chen, T. W., and Chien, S. Y. (2010). “Bandwidth adaptive hardware architecture of K-means clustering for video analysis”. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 18(6): 957-966.
[7]     Yang, J., Zhuang, Y., and Wu, F. (2012). “ESVCbased extraction and segmentation of texture features”. Computers & Geosciences, Elsevier, 49: 238-247.
[8]     Mora, J. L., Armas-Herrera, C. M., Guerra, J. A., Rodríguez-Rodríguez, A., and Arbelo, C. D. (2012). “Factors affecting vegetation and soil recovery in the Mediterranean woodland of the Canary Islands (Spain)”. Journal of Arid Environments, Elsevier, 87: 58-66.
[9]     Meshkani, S. A., Mehrabi, B., Yaghubpur, A., and Alghalandis, Y. F., (2011). “The application of geochemical pattern recognition to regional prospecting: A case study of the Sanandaj–Sirjan metallogenic zone, Iran”. Journal of Geochemical Exploration, Elsevier, 108: 183-195.
[10]  Sfidari, E., Kadkhodaie-Ilkhchi, A., and Najjari, S. (2012). “Comparison of intelligent and statistical clustering approaches to predicting total organic carbon using intelligent systems”. Journal of Petroleum Science and Engineering, Elsevier, 63: 190-205.
[11]  Wegner, T., Hussein, T., Hämeri, K., Vesala, T., Kulmala, M., and Weber, S., (2012). “Properties of aerosol signature size distributions in the urban environment as derived by cluster analysis”. Atmospheric Environment, Elsevier, 61: 350-360.
[12]  Geological Survey and Mineral Exploration of Iran (GSI), Geochemical 1:100000 Sheet. Tarq, Isfahan, Code 6356 .
[13]  Kargar, R., Eshgh Abad, (1992). “Studies Tracking Report Tarq 1:100000 Sheet”. GSI. (in Persian).
[14]  Babregani, and Molaei, (1990). “Tracking Report of Pahne-Mayme-Tarq Zone”. GSI. (in Persian).
[15]  Hasani Pak, A. A., (1995). “Systematic Geochemical Exploration Report in 1:100000 Tarq Sheet”. Geological Survey and Mineral Exploration of Iran (GSI).
[16]  Rahmati, and Zahedi, (1995). “Geology 1:100000 Map of Tarq Isfahan”. Geological Survey and Mineral Exploration of Iran (GSI). (in Persian).
[17]  Egozcue, J. J., Pawlowsky-Glahn, V., and Mateu-Figueras, G. (2003). “Isometric Logratio Transformations for Compositional Data Analysis”. Mathematical Geology, 35: 279-300.
[18]  Jain, A. K. (2012). “Data clustering: 50 years beyond K-Means”. Pattern Recognition Letters, Elsevier, 31: 651-666.
[19]  Saha, S., and Bandy opadhyay, S. (2013). “A generalized automatic clustering algorithm in a multi objective framework”. Applied Soft Computing, Elsevier, 13: 89-108.
[20]  Ghannadpour, S. S., Hezarkhani, A., and Farahbakhsh, E. (2013). “An investigation of Pb geochemical behavior respect to those of Fe and Zn based on k-Means clustering method”. Journal of Tethys, 1(4): 291-302.
[21]  Menard, J. J. (1995). “Relationship between altered pyroxene diorite and the magnetite mineralization in the Chilean Iron Belt, with emphasis on the El Algarrobo iron deposits (Atacama region, Chile)”. Mineral Deposita, Springer-Verlag, 30: 268-274.
[22]  Leiluo, X., Xianwu, B., Ruizhong, H., and Xingchun, Z. (2012). “Relationships between porphyry Cu–Mo mineralization in the Jinshajiang– Red Rivermetallogenic belt and tectonic activity: Constraints from zircon U–Pb and molybdenite Re– Os geochronology”.