[1] Sillitoe, R. (2010). “Porphyry Copper Systems”. Economic Geology, 105: 3-41.
[2] Berger, B. R., Ayuso, R. A., Wynn, J. C., and Seal, R. R. (2008). “Preliminary Model of Porphyry Copper Deposits”. U.S.Geological Survey Open-File Report 2008–1321, p. 55.
[3] علویپناه، ک.؛ 1385؛ "کاربرد سنجش از دور در علوم زمین". تهران، انتشارات دانشگاه تهران.
[4] یوسفیزاده، ا.، نوروزی، غ.، دولتی، ف.، ضیایی، م.؛ 1391؛ "استفاده از روشهای MFوLS-Fit جهت بارزسازی مناطق دگرسانی گرمابی مرتبط با کانیسازی مس پورفیری در منطقه جبالبارز". علوم زمین.
[5] Rowan, L. C., Schmidt, R. G., and Mars, J. C. (2006). “Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data”. Remote Sensing of Environment, 104: 74–87.
[6] Beiranvand Pour, A., and Hashim, M. (2012). “Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh–Dokhtar Volcanic Belt, Iran”. Advances in Space Research, 49: 753-769.
[7] Di Tommaso, I., and Rubinstein, N. (2007). “Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina”. Ore Geology Reviews, 32: 275–290.
[8] Rowan, L. C., and Mars, J. (2003). “Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data”. Remote Sensing of Environment, 84(3): 350-366.
[9] Mars, J. C., and Lawrence, R. C. (2010). “Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals”. Remote Sensing of Environment, 114: 2011–2025.
[10] Moghtaderi, A., Moore, F., and Mohammadzadeh, A. (2007). “The application of advanced space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the Chadormalu paleocrater, Bafq region, Central Iran”. Journal of Asian Earth Sciences, 30: 238–252.
[11] Beiranvand Pour, A., and Hashim, M. (2014). “ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration”. springerplus, 3: 1-19.
[12] Ahmad, T., and Posht Kuhi, M. (1993). “Geochemistry and petrogenesis of Urumiah- Dokhtar volcanic belt around Nain and Rafsanjan areas: a preliminary study”. Iranian Ministry of Mines (Report), Tehran.
[13] Berberian, F., and Berberian, M. (1981). “Tectono-Plutonic Episodes in Iran. Zagros, Hindu Kush, Himalaya: Geodynamic Evolution”. American Geophysical Union & Geological Society of America, 3: 5-32.
[14] Hassanzadeh, J. (1993). “Metallogenic and Tectonomagmatic Events in the SE Sector of the Cenozoic active continental margin of central Iran (Shahr e Babak area, Kerman Province)”. University of California, Los Angeles.
[15] Abedi, M., Norouzi, G. -H., and Fathianpour, N. (2013). “Fuzzy outranking approach: A knowledge-driven method for mineral”. International Journal of Applied Earth Observation and Geoinformation, 21: 556-567.
[16] Abedi, M., Torabi, S., Norouzi, G. -H., Hamzeh, M., and Elyasi, G. -R. (2012). “PROMETHEE II: A knowledge-driven method for copper exploration”. Computers & Geosciences, 46: 255-263.
[17] Abedi, M., Norouzi, G. -H., and Bahroudi, A. (2012). “Support vector machine for multi-classification of mineral prospectivity areas”. Computers & Geosciences, 46: 272-283.
[18] Abedi, M., and Norouzi, G. -H. (2012). “Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration”. Journal of Applied Geophysics, 83: 35-45.
[19] Abedi, M., Torabi, S., Norouzi, G. -H., and Hamzeh, M. (2012). “ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping”. Journal of Applied Geophysics, 87: 9-18.
[20] Abedi, M., Norouzi, G. -H., and Fathianpour, N. (2015). “Mineral potential mapping in Central Iran using fuzzy ordered weighted averaging method”. Geophysical Prospecting, 63: 461-477.
[21] Agard, P., Omrani, J., Jolivet, L., and Mouthereau, F. (2005). “Convergence history across Zagros (Iran): constraints from collisional and earlier deformation”. International Journal of Earth Sciences, 94: 401-419.
[22] Bedini, E. (2011). “Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data”. Advances in Space Research, 47: 60-73.
[23] Beiranvnd pour, A., and Hashim, M. (2011). “Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran”. Journal of Asian Earth Sciences, 42(6): 1309-1323.
[24] Gabr, S., Ghulam, A., and Kusky, T. (2010). “Detecting areas of high-potential gold mineralization using ASTER data”. Ore Geology Reviews, 38: 59-69.
[25] Abedi, M., Norouzi, G. -H., and Bahroudi, A. (2012). “Support vector machine for multi-classification of mineral prospectivity areas”. Computers & Geosciences, 46: 272-283.
[26] Zuo, R., and Carranza, E. M. (2011). “Support vector machine: A tool for mapping mineral prospectivity”. Computers & Geosciences, 37: 1967-1975.
[27] Yu, L., Porwal, A., Holden, E. -J., and Dentith, M. C. (2012). “Towards automatic lithological classification from remote sensing data using support vector machines”. Computers & Geosciences, 45: 229-239.
[28] Honarmand, M., Ranjbar, H., and Shahabpour, J. (2011). “Application of Principal Component Analysis and Spectral Angle Mapper in the Mapping of Hydrothermal Alteration in the Jebal–Barez Area, Southeastern Iran”. Resource Geology, 62: 119-139.
[29] Mars, J. C., and Rowan, L. C. (2006). “Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Refl ection Radiometer (ASTER) data and logical operator algorithms”. U.S. Geological Survey, 2(3): 161-186.
[30] Shahriari, H., Honarmand, M., and Ranjbar, H. (2015). “Comparison of multi-temporal ASTER images for hydrothermal alteration mapping using a fractal-aided SAM method”. International Journal of Remote Sensing, 36(5): 1271-1289.
[31] Salimi, A., Ziaii, M., Hosseinjani Zadeh, M., Amiri, A., and Sadegh, K. (2015). “High performance of the support vector machine in classifying hyperspectral data using a limited dataset”. International Journal of Mining and Geo-Engineering (IJMGE), 49(2): 253-268.
[32] YAJIMA, T. (2014). “ASTER Data Analysis Applied to Mineral Resource Exploration and Geological Mapping ”. Nagoya University, Nagoya, p. 20.
[33] Adiri, Z., El Harti, A., Jellouli, A., Maacha, L., and Bachaoui, E. (2016). “Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas”. Journal of Applied Remote Sensing, 10: 50-62.
[34] Mountrakis, G., Im, J., and Ogole, C. (2011). “Support vector machines in remote sensing: A review”. ISPRS Journal of Photogrammetry and Remote Sensing, 66: 247-259.
[35] Abedi, M., Gholami, A., and Nourozi, G. -H. (2013). “A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran”. Computers & Geosciences, 52: 269-280.