Study of the geostatic position of nitrate using GIS in groundwater of Golgir Plain located in south east of Masjed Soleyman County

Authors

1 Assistant Professor, Dept. of Petroleum, Islamic Azad University, Masjed-soleiman Branch, Masjed-Soleiman

2 M.Sc Graduated, Expert GIS water & sewage company Khuzestan, Ahwaz

3 M.Sc Student, Dept. of Petroleum, Islamic Azad University, Mahshahr Branch, Mahshahr

Abstract

The study area is located in 90 km N-E Ahwaz and 20 km S-E Masjed Soleyman. Long-term weather statistics of the region's meteorological stations indicates that the region with a mean annual precipitation of 464.8 mm, an average annual temperature of 25.3 ° C and a relative humidity of 29% is a region with a semi-arid climate according to the Demartenne classification, Most rainfall occurs in winter. Formations exposed in this area in order of  the oldest to new ones include the present-day sediments, the sandstone-Marni Aghajari formation, limestone formations, Marni Mishan, Gachsaran Formation, Asmari limestone formation, respectively. Wells are the main sources of water supply in the region. In this paper, the aquifer of Golgir Plain was studied using GIS software to prepare the criterion maps, to weigh them and combine them. Preparation of these maps was done using ArcGIS 9.2 software package and fuzzy modeling was done using MATLAB software. ArcGIS software index has been selected to implement the overlapping model. For fuzzy integration, due to its high ability  work with Raster data as a matrix and also its simple programming, the MATLAB software was used as well as PCI Geomatica software is used. Finally, eight intrinsic vulnerability maps are obtained. For each vulnerability map, correlation between vulnerability index and nitrate concentration have been calculated. This correlation is determined by Spearman correlation coefficient.

Keywords


[1]    نظری زاده، ف.؛ ارشادیان، ب.؛ زند وکیلی، ک.؛ 1385؛ "بررسی تغییرات مکانی کیفیت آب زیرزمینی دشت بالارود در استان خوزسـتان"، اولین همایش منطقه ای بهره برداری بهینه از منابع آب حوزه های کارون و زاینده رود، دانشگاه شهرکرد، ص 1240-1236.
[2]     Kraft, G. J., and Stites, W. (2003). “Nitrate impacts on groundwater from irrigated-vegetable systems in a humid north-central US sand plain”. Agriculture Ecosystems and Environment, 100(1): 63–74.
[3]     Stuart, A., redrick, F., and Rick, J. (1994). “Survey of Nitrate Contamination in Shallow Domestic Drinking Water Wells of the Inner Coastal of Georgia”. Environmental Geochemistry and Health, 11(2): 215–231.
[4]    Azgoly, A. (2005). “Nitrate Concentration Alteration trend in Aquifer West Tehran of First District of Towns”. Water and Environment Journal, 62(2): 35–41.
[5]    عودی، ق.؛ 1373؛ "کیفیت آب آشامیدنی"، انتشارات محقق، مشهد، ص 147.
[6]    USEPA. (2009). “Estimated National Occurance and Exposure to nitrate and nitrite in Public Drinking Water Supplies”.  Washington DC: United States Environmental Protection Agency (UAEPA), 600 / 1-77-030.
[7]     نجاتی جهرمی، ز.؛ 1388؛ "شبیه سازی منابع آب زیرزمینی دشت عقیلی با استفاده از مدل ریاضی تفاضلات محدود"، پایان نامه کارشناسی ارشد آبیاری و زهکشی، دانشگاه شهید چمران اهواز، ص 158.
[8]     استواری، ی.؛ بیگی، ح.؛ داودیان، ع.؛ 1931؛ "بررسی تغییرات مکانی نیترات در آب زیرزمینی دشت لردگان"، مدیریت آب و آبیاری، دوره دوم، شماره 1، ص 67-55.
[9]     اصغری مقدم، ا.؛ ندیری، ع.؛ پاک نیا، و.؛ 1395؛ "جهت  ارزیابی آسیب پذیری آبخوان دشت بستان آباد با استفاده از روش DRASTIC وSINTACS"، مجله علمی پژوهشی هیدروژئومورفولوژی، شماره 8، پاییز 1395، ص 52-21.
[10]  لاله زاری، ر.؛ طباطبایی، ح.؛ یارعلی، ن.؛ 1388؛ "بررسی تغییرات ماهانه نیترات در آب زیرزمینی دشت شهرکرد و پهنه بندی با استفاده از سیستم اطلاعات جغرافیایی"، مجله پژوهش آب ایران، سال سوم، شماره 4، بهار و تابستان 1388، ص17-9.
[11]بدیعی نژاد، ا.؛ غلامی، م.؛ جعفری، ا.؛ عامری، ا.؛ 1391؛ "بررسی عوامل موثر بر غلظت نیترات منابع آب شرب زیرزمینی شیراز با استفاده از سیستم اطلاعات جغرافیایی (GIS)"، فصلنامه علمی پژوهشی دانشکده بهداشت یزد، دوره 11، شماره 2، ص 56-47.
[12]  Malczewski, J. (1999). “GIS and multicriteria decision analysis”. John Willey & Sons, New York.
[13]  Rushton, K. R. (2003). “Groundwater Hydrology, Conceptual and Computational Models”. John Wiley & Sons Inc., pp. 416.
[14]  Scanlon, B. R., Healy, R. W., and Cook, P. G. (2002). “Choosing appropriate techniques for quantifying groundwater recharge”. Hydrology Journal, 10(1): 18–39.
[15]  Zadeh, A. (1987). “Fuzzy sets as a basis for theory of possibility”. Fuzzy Sets and Systems, 1(1): 3–28.