Effect of thermal treatment on phase transformations and standard Bond rod mill work index

Authors

1 M.Sc Graduated, Dept. of Mining Engineering, Imam Khomeini International University

2 Assistant Professor, Dept. of Mining Engineering, Imam Khomeini International University

Abstract

In this study, the effect of thermal treatment on phase transformations and grindability of a low-grade manganese ore containing silica was studied. Thermal analysis (DTA/TG) and scanning electron microscope (SEM) are used to study the phase transformation and structural change of samples under thermal treatment. Thermal effect on grindability under various temperature and thermal duration time on mill feed was determined by standard Bond rod mill work index. Based on the results of thermal analysis, at 750°C dehydroxylation of montmorillonite and decomposition of calcite occured, and at 850°C decomposition of montmorillonite to silicate minerals were proved. SEM studies revealed that thermal treatment lead to some cracks with the size of 280*13 µm in the sample. For 60 min thermal treatment, while increasing temperature to 800°C, the amount of fine particles produced in a cycle (Gi) and the P80 of the mill product were increased to 90% and 10%, respectively and standard Bond rod mill work index was decreased from 20.06 Kwh/t to 14.35 Kwh/t.

Keywords


[1]     Refahi, A., Rezai, B., and Aghazadeh Mohandesi, J. (2007). “Use of rock mechanical properties to predict the Bond crushing index”. Minerals Engineering, 20: 662–669.
[2]     Demirel, H. (1988). “Grindability determination”. Proceeding of the III international Min Proce, Symposium, 21-32.
[3]     Man, Y. T. (2002). “Technical Note why is the Bond Ball Mill Grindability Test done the way it is done?”. Mineral Processing and Environmental Protection, 2(1): 34-39.
[4]     Sahoo, B. K., De, S., and Meikap, B. C. (2011). “Improvement of Grinding Characteristics of Indian Coal by Microwave Pre-Treatment”. Fuel Processing Technology, 92: 1920-1928.
[5]     Kingman, S. W., Jackson, K., Cumbane, A., Bradshaw, S. M., Rowson, N. A., and Greenwood, R. (2004). “Recent developments in microwave-assisted comminution”. International Journal of Mineral Processing, 74: 71-83.
[6]     Singh, V., Tathavadkar, V., Denys, M. B., and Venugopal, R. (2012). “Application of Quartz Inversion Phenomenon in Mineral Processing – A Case Study of Siliceous Manganese Ores”. Minerals Engineering, 32: 8-11.
[7]     Kingman, S. W., Jackson, K., Bradshaw, N. A., and Greenwood, R. (2004). “An investigation into the influence of microwave treatment on mineral ore comminution”. Powder Technology, 146: 176-184.
[8]     Sikong, L., and Bunsin, T. (2009). “Mechanical Property and Cutting Rate of Microwave Treated Granite Rock”. Songklanakarin Journal of Science and Technology, 31(4): 447-452.
[9]     Barani, k., Koleini, S. M. J., and Ergun, L. (2010). “The Effect of Microwave Treatment upon an Iron Ore Comminution”. International Mining Congress, Tehran, Iran.
[10] Kumar, P., Sahoo, B. K., De, S., Kar, D. D., Chakraborty, S., and Meikap, B. C. (2010). “Iron ore grindability improvement by microwave pretreatment”. Journal of Industrial and Engineering Chemistry, 16: 805-812.
[11] Sheng-hui, G., Guo, CH., Jin-hui, P., Chen, J., Dong-bo, L., and Li-jun, L. (2011). “Microwave Assisted Grinding of Ilmenite Ore”. Transactions of Nonferrous Metals Society of China, 21: 2122-2126.
[12] Masri, M., Sibai, M., Shao, J. F., and  Mainguy, M. (2014). “Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale”. International Journal of Rock Mechanics and Mining Sciences, 70(9): 185–91.
[13] اوحدی، و. ح.؛ پور زعفرانی، م.؛ 1391؛ "مطالعه تأثیر حرارت بر فرایند اندرکنش کائولینیت و کربنات"، دومین کنفرانس ملی سازه- زلزله- ژئوتکنیک، مازندران.
[14] Joshi, R. C., Asce, F., Achari, G., Horsfield, D., and Nagaraj, T. S. (1994). “Effect of Heat Treatmeant on Strength of Clays”. Geotechnical Engineering, 120: 1080-1088.
[15] برنامه و تهیه ضوابط و معیارهای معدن- وزارت صنعت، معدن و تجارت؛ 1393؛ "دستورالعمل تعیین شاخص خردایش در آسیاهای مختلف"، انتشارات سازمان نظام مهندسی معدن، ص 12-3.
[16] Foldvari, M. (2011). “Handbook of Thermo gravimetric System of Minerals and Its Use in Geological Practice”. Occasional Papers of the Geological Institute of Hungury, pp. 213.
[17] Grim, E. R., and Rowland, R. A. (1942). “Differential Thermal Analyses of Clay Minerals and Other Hydrous Materials”. State Geological Survey, 27(11): 746-761.
[18] Emmerich, K., Madsen, F. T., and Kahr, G. (1999). “Dehydroxylation Behavior of Heat-Treated and Steam- Treated Homoionic”. Clay and Clay Minerals, 47(5): 591-604.
[19] Kingman, S. W., Vorster, W., and Rowson, N. A. (2000). “The Effect of Microwave Radiation on the Processing of Palabora Copper Ore”. The South African Institute of Mining and Metallurgy, 197-204.
[20] Drost, J. J., and Mahan, W. M. (1973). “Effects of Thermal Treatments upon Concentratability of a non-Magnetic Iron Ore”. Washington, U.S. Bureau of Mines.
[21] Vorster, W. (2001). “The Effect of Microwave Radiation on Mineral Processing”. Degree of Doctor of Philosophy, the University of Birmingham.
[22] Jones, D. A., Kingman, S. W., Whittles, D. N., and Lowndes, I. S. (2007). “The Influence of Microwave Energy Delivery Method on Strength Reduction in Ore Samples”. Chemical Engineering and Processing, 46: 291–299.
[23] Koleini, S. M. J., Barani, K., and Rezaei, B. (2012). “The Effect of Microwave Treatmeant on Dry Grinding Kinetics of Ore”. Mineral Processing & Extractive Metall. Rev., 33: 159–169.
[24] Omran, M., Fabritius, T., and Mattila, R. (2015). “Thermally Assisted Liberation of High Phosphorus Oolitic Iron Ore: A Comparison between Microwave and Conventional Furnaces”. Powder Technology, 269: 7-14.