استفاده از باطله بوکسیت به عنوان نانو جاذب معدنی برای حذف آلاینده های فلزی مس و منگنز از پساب اسیدی معدن

نوع مقاله: علمی-پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود

2 کارشناسی ارشد مهندسی اکتشاف معدن، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود

چکیده

در این مقاله از باطله بوکسیت به عنوان یک جاذب ارزان و غیر‌سمی برای حذف آلاینده‌های فلزی مس و منگنز از پساب اسیدی معدن مس سرچشمه استفاده شده است. پس از اصلاح و کاهش ابعاد باطله بوکسیت در مقیاس نانو، ابتدا شناسایی نانوجاذب با استفاده از آنالیزهای پراش اشعه ایکس (XRD)، فلورسانس اشعه ایکس (XRF)، تصویر میکروسکوپ الکترونی (SEM) و تبدبل فوریه فروسرخ (FT-IR) انجام شده است، سپس تاثیر پارامترهای حاکم بر فرآیند جذب از فاز محلول شامل مقدار جاذب و دما بررسی شده و در نهایت فرآیند جذب از دیدگاه تعادلی و ترمودینامیکی بررسی شده است. نتایج نشان می‌دهد که فرآیند جذب یون‌های مس و منگنز به صورت خود به خودی (انرژی آزاد گیبس به ترتیب 40- و 15- کیلوژول بر مول) و گرماده (آنتالپی 35 و 37 کیلوژول بر مول) بوده است و از ایزوترم لانگمویر تبعیت می‌کند. نتایج نشان می‌دهد که باطله بوکسیت پتانسیل بالایی در حذف فلزات سمی از پساب دارد و راندمان آن برای عنصر مس 99 درصد و برای منگنز بیش از 90 درصد است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Bauxite Waste as a Nano-Absorbent Mineral to Removal of Copper and Manganese Metalic Contaminants from the Acid Mine Drainage

نویسندگان [English]

  • K. Seifpanahi-Shabani 1
  • A. Abedi 1
  • M. Tabari 2
1 Assistant Professor, Faculty of Mining, petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
2 M.Sc, Dept. of Mining Engineering, Faculty of Mining, petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

There are different methods to remove contaminants. For this, adsorption process is one of the most successful methods. Increasing the effectivness is the main purpose of using nano-absorbent. By reducing the size of the adsorbent particles, the amount of eliminated ions increases. Considering the importance of environmental protection, control, reduction and elimination of toxic and inorganic pollutants from water and effluent, this paper aims to demonstrate the effectivness of using bauxite waste, as a cheap and non-toxic adsorbent, for removing copper and manganese metal contaminants from acid mine drainage of Sarcheshmeh copper mine.

کلیدواژه‌ها [English]

  • Copper and manganese
  • acid mine drainage
  • bauxite waste
  • Adsorption
[1]     Hounslow, A. (2018). “Water quality data: analysis and interpretation”. CRC press, pp. 345.

[2]     Njenga, H. N. (2018). “Industrial Inorganic Chemistry”. Elsevier, pp. 294.

[3]     Torrellas, S. A., Rodriguez, A. R., Escudero, G. O., Martín, J. M. G., and Rodriguez, J. G. (2015). “Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon”.
Journal of Environmental Science and Health, Part A, 50: 1241–1248.

[4]     Irani, M., Amjadi, M., and Ali, M. (2011). “Comparative study of lead sorption onto natural perlite, dolomite and diatomite”. Chemical Engineering Iournal, 178: 317–323.

[5]     Sud, D., Mahajan, G., and Kaur, M. P. (2008). “Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review”. Journal of Hazardus Materials, 99: 6017–6027.

[6]     Yakun, H. U. O., Zoe, D. W., Xia, H., and Jingnian, X. U. (2011). “Fluoride Removal by Lanthanum Alginate Bead : Adsorbent Characterization and Adsorption Mechanism”. Chinese Journal of Chemical Engineering, 19: 365–370.

[7]     Swarnalatha, K., and Ayoob, S. (2016). “Adsorption studies on coir pith for heavy metal removal”. International Journal of Sustainable Engineering, 9: 259–265.

[8]     Dong, J., Du, Y., Duyu, R., Shang, Y., Zhang, S., and Han, R. (2019). “Adsorption of copper ion from solution by polyethylenemine modified wheat straw”. Bioresource Technology Reports, 6: 96-102.

[9]     Mohammed, R., El-Maghrabi, H. H., Younes, A. A., Farag, A. B., Mikhail, S., and Riad, M. (2017). “SDS-goethite adsorbent material preparation, structural characterization and the kinetics of the manganese adsorption”. Journal of Molecular Liquids, 231: 499-508.

[10]  Taneez, M., Hurel, C., Marmier, N., and Lefèvre, G. (2017). “Adsorption of inorganic pollutants on bauxite residues: An example of methodology to simulate adsorption in complex solids mixtures”. Applied Geochemistry, 78: 272-278.

[11]  Qi, X., Wang, H., Huang, C., Zhang, L., Zhang, J., Xu, B., and Junior, J. T. A. (2018). “Analysis of bauxite residue components responsible for copper removal and related reaction products”. Chemosphere, 207: 209-217.

[12]  Li, G., Gu, F., Jiang, T., Luo, J., Deng, B., and Peng, Z. (2017). “Beneficiation of Aluminum-, iron-, and titanium-bearing constituents from diasporic bauxite ores”. The Journal of The Minerals, Metals & Materials Society, 69: 315–322.

[13]  Yu, W., Algeo, T. J., Du, Y., Zhang, Q., and Liang, Y. (2016). “Mixed volcanogenic–lithogenic sources for Permian bauxite deposits in southwestern Youjiang Basin, South China, and their metallogenic significance”. Sedimentary Geology, 341: 276–288.

[14]  Santos, S. C. R., and Boaventura, R. A. R. (2008). “Adsorption modelling of textile dyes by sepiolite”. Applied Clay Science, 42: 137–145.

[15]  Deb. M., and Joshi, A. (1984). “Petrological studies on two East Coast bauxite deposits of India, and implications on their genesis”. Sedimentary Geology, 39: 121–139.

[16]  Ayoob, S., Gupta, A. K., and Bhakat, P. B. (2007). “Performance evaluation of modified calcined bauxite in the sorptive removal of arsenic (III) from aqueous environment”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 293: 247–254.

[17]  Georgiadis, I. K., Papadopoulos, A., Filippidis, A., Godelitsas, A., Tsirambides, A., and Vogiatzis, D. (2013). “Removal of malachite green dye from aqueous solutions by diasporic Greek raw bauxite”. Bulletin of the Geological Society of Greece, 47: 927–933.

[18]  Turan, M. D., and Altundoğan, H. S. (2014). “A study on Cr(VI) reduction from aqueous solutions by bauxite”. Journal of Central South University of Technology, 21: 1961–1967.

[19]  Khaligh, A., Zavvar, M. H., and Rashidi, A. (2017). “Ultrasonic Assisted Removal Of Ni(II) And Co(II) Ions From Aqueous Solutions By Carboxylated Nanoporous Grapheme”. Journal Of Applied Chemistry, 11(41): 49-58.

[20]  Roldán, M. L., Centeno, S. A, and Rizzo, A. (2014). “An improved methodology for the characterization and identification of sepia in works of art by normal Raman and SERS, complemented by FTIR, Py-GC/MS, and XRF”. Journal of Raman Spectroscopy, 45: 1160–1171.

[21]  Seifpanahi-Shabani K., Doulati-Ardejani, F., Badii, K., and Olya, M. E. (2017). “Preparation and characterization of novel nano-mineral for the removal of several heavy metals from aqueous solution: Batch and continuous systems”. Arabian Journal of Chemistry, 10(S): 3108–S3127.

[22]  Putro, J. N., Santoso, S. P., Ismadji, S., and Ju, Y. H. (2017). “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose bentonite nanocomposite: improvement on extended Langmuir isotherm model”. Microporous Mesoporous Mater, 246: 166–177.

[23]  Li, C., Duan, H., Wang, X., Meng, X., and Qin, D. (2015). “Fabrication of porous resins via solubility differences for adsorption of cadmium(II)”. Chemical Engineering Journal, 262: 250–259.

[24]  Wang, Q., Luan, Z., Wei, N., Li. J., and Liu, C. (2009). “The color removal of dye wastewater by magnesium chloride/red mud (MRM) from aqueous solution”. Journal of Hazardous Materials, 170: 690–698.

[25]  Wu, Y., Fan, Y., Zhang, M., Ming, Z., Yang, S., Arkin, A., and Fang, P. (2016). “Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems”. Biochemical Engineering Journal, 105: 27–35.