حذف سولفات تحت شرایط زهاب اسیدی معدن با استفاده از پیلارد نانو بنتونیت آلومینیوم و آهن

نوع مقاله: علمی-پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی معدن، دانشکده مهندسی معدن، دانشگاه صنعتی سهند، تبریز

2 دانشیار، گروه مهندسی معدن، دانشکده مهندسی معدن، دانشگاه صنعتی سهند، تبریز

چکیده

سولفات موجود در زهاب اسیدی، در غلظت­های بالا به عنوان یکی از آلاینده­های شیمیایی مطرح است؛ به طوری که عدم توجه کافی به حذف سولفات اثرات نامطلوبی برای موجودات زنده به همراه داشته است و حتی به تاسیسات آب و فاضلاب آسیب جدی وارد می­کند. در این تحقیق، برای حذف سولفات از فرآیند جذب به عنوان یک روش موثر و در عین حال ساده و کم هزینه استفاده شده است. با توجه به اهمیت کانی‌های رسی به عنوان یک جاذب طبیعی و سازگار با محیط زیست، اصلاح آن­ها برای بهبود خواصشان همراه با ایجاد تخلخل­های دایمی بسیار کاربردی است. از آنجایی که در سال‌های اخیر توجه به پیلارد رس‌ها افزایش یافته است، در این پژوهش سعی شد با اصلاح خواص ساختاری نانو بنتونیت، جاذبی به صورت پیلارد شده با ترکیبی از فلزات آهن و آلومینیوم به دست آید. در این راستا، برای افزایش تعداد پیلارها، بهبود خواص جذبی، کاهش میزان مصرف آب و زمان سنتز این جاذب، از تابش­های مایکروویو و امواج اولتراسوند استفاده شد که در مقایسه با نمونه­ بنتونیت اولیه به جاذب موثری با ظرفیت جذب بالا دست یافته شد. در ادامه با بررسی اثر تغییرات دمایی و تطابق آن با داده­های ایزوترمی جذب فرندلیچ، لانگمویر و تمکین، ثابت ترمودینامیکی فرآیند محاسبه شد و نشان داد که فرآیند جذب با هر دو نمونه­ بنتونیت اولیه و پیلارد شده خود به خودی و گرمازا است. با توجه به تطابق داده­ها با مدل­های سینتیکی شبه مرتبه دوم و مدل نفوذ درون ذره­ای، مکانیزم اصلی جذب به صورت جذب سطحی شیمیایی همراه با نفوذ به داخل حفرات جاذب به ویژه در نمونه­ پیلارد شده است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sulfate removal from acid mine drainage using Al, Fe-pillared nano bentonite

نویسندگان [English]

  • Sh. Barakan 1
  • Valeh Aghazadeh 2
1 Ph.D Student, Dept. of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Tabriz
2 Associate Professor, Dept. of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Tabriz
چکیده [English]

High concentration of sulfate in acid mine drainage is one of chemical pollutants which can cause various health problems and damage the wastewater piping systems if not enough attention is given to its removal. In this research, adsorption process was selected as an effective, simple and low-cost method for sulfate removal. The modification of clay minerals as a natural and environmently-friendly adsorbent is very useful for improving their properties along with permanent porosity. In recent years, pillared clay has been received much attention. In this study, the structural properties of Al, Fe-pillared nano bentonite is improved by using the combined ultrasonic wave and microwave irradiation technology. In this adsorbent, the synthesis duration time and water consumtion are reduced and the number of active sites are increased. As a result, an effective adsorbent is produced with high absorption capacity compared to the initial bentonite sample. In this study, the thermodynamic parameters was calculated by examining the effect of temperature, while the adsorption data are fitted by Freundlich, Langmuir and Temkin isotherm models. The thermodynamic results showed that the adsorption process for both initial and pillared bentonite were exothermic and spontaneous. Second-order kinetic models and intra-particle diffusion model demonstrated that the main adsorption mechanism was chemical absorption with penetration into the absorbent porous media, especially in the pillared sample.

کلیدواژه‌ها [English]

  • Nano bentonite
  • Pillared Al-Fe nano bentonite
  • Sulfate removal
  • Adsorption
[1]     Simate, G. S., and Ndlovu S. (2014). “Acid mine drainage: Challenges and opportunities”. Journal of Environmental Chemical Engineering, 2(3): 1785-1803.

[2]     Gitari, W. M. (2014). “Attenuation of metal species in acidic solutions using bentonite clay: implications for acid mine drainage remediation”. Toxicological & Environmental Chemistry, 96(2):  201-217.

[3]     Tang, W., He, D., Zhang, C., and Waite, T. D. (2017). “Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI)”. Water Research, 121: 302-310.

[4]     Benatti, C. T., Tavares, C. R. G., and Lenzi, E. (2009).  “Sulfate removal from waste chemicals by precipitation”. Journal of Environmental Management, 90(1): 504-511.

[5]     Kaksonen, A. H., Franzmann, P. D., and Puhakka, J. A. (2003). “Performance and ethanol oxidation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic metal-containing wastewater”. Biodegradation, 14(3): 207-217.

[6]     Maree, J. P., Strobos, G., Greben, H., Netshidaulu,  E., Steyn, E., Christie, A., Günther, P., and Waanders, F. B. (2004). “Treatment of acid leachate from coal discard using calcium carbonate and biological sulphate removal”. Mine Water and the Environment, 23(3): 144-151.

[7]     Cogho, V., and van Niekerk. A. (2009). “Optimum coal mine water reclamation project”. International Mine Water Conference, Pretoria, South Africa, 415-430.

[8]     Ferreira, B. C. S., Lima, R. M. F., and Leão, V.A. (2011). “Remoção de sulfato de efluentes industriais por precipitação”. Eng Sanit Ambient, 16(4): 361-368.

[9]     Ford, R. G., Scheinost, A. C., and Sparks, D. L. (2001).  “Frontiers in metal sorption/precipitation mechanisms on soil mineral surfaces”. Advances in Agronomy, 74(4): 41-62.

[10]  Ishiguro, M., and Nakajima, T. (2000). “Hydraulic conductivity of an allophanic Andisol leached with dilute acid solutions”. Soil Science Society of America Journal, 64(3): 813-818.

[11]  Ishiguro, M., Nakaishi, K., and Nakajima, T. (2003). “Saturated hydraulic conductivity of a volcanic ash soil affected by repulsive potential energy in a multivalent anionic system”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 230(1-3): 81-88.

[12]  Peak, D., Ford, R. G. and Sparks, D. L. (1999). “An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite”. Journal of Colloid and Interface Science, 218(1): 289-299.

[13]  Wijnja, H., and Schulthess, C. P. (2000). “Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr) oxide surfaces”. Journal of Colloid and Interface Science, 229(1): 286-297.

[14]  Chen, ong-gui, Yong, H. E., Ye, W., Sui, W., and Xiao, M. (2013). “Effect of shaking time, ionic strength, temperature and pH value on desorption of Cr(III) adsorbed onto GMZ bentonite”. Transactions of Nonferrous Metals Society of China, 23(11): 3482-3489.

[15]  Atia, A. A. (2008). “Adsorption of chromate and molybdate by cetylpyridinium bentonite”. Applied Clay Science, 41(1–2): 73-84.

[16]  Taha, A. A., Shreadah, M. A., Ahmed, A. M., and Heiba, H. F. (2016). “Multi-component adsorption of Pb(II), Cd(II), and Ni(II) onto Egyptian Na-activated bentonite; equilibrium, kinetics, thermodynamics, and application for seawater desalination”. Journal of Environmental Chemical Engineering, 4(1): 1166-1180.

[17]  Sen, T. K., and Gomez, D. (2011). “Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite”. Desalination, 267(2–3): 286-294.

[18]  Heller-Kallai, L. (2013). “Thermally Modified Clay Minerals, in Developments in Clay Science”. Developments in Clay Science, 1: 289-308.

[19]  Molina, C., Casas, J., Pizarro, A. H., and Rodriguez, J. J. (2011). “Pillared Clays as green chemistry catalysts: application to wastewater treatment”. Clay: Types, Properties and Uses, 435-474.

[20]  Cool, P., and Vansant, E. (1998). “Pillared clays: preparation, characterization and applications”. In Synthesis, Springer,  265-288.

[21]  Miri, B., Bergaoui, L.,  and Ghorbel, A. (2011). “Synthesis and characterization of Al-pillared montmorillonite in presence of Mn (II)”. Applied Clay Science, 53(4): 691-695.

[22]  Gil, A., Korili, S. A., Trujillano, R., and Vicente, M. A. (Eds.) (2010). “Pillared clays and related catalysts”. Springer Science & Business Media, pp. 522.

[23]  Olaya, A., Moreno, S., and Molina, R.( 2009). “Synthesis of pillared clays with Al13-Fe and Al13-Fe-Ce polymers in solid state assisted by microwave and ultrasound: Characterization and catalytic activity”. Applied Catalysis A: General, 370(1-2): 7-15.

[24]  Kloprogge, J. T., Duong,  L. V., and Frost, R. L. (2005). “A review of the synthesis and characterisation of pillared clays and related porous materials for cracking of vegetable oils to produce biofuels”. Environmental Geology, 47(7): 967-981.

[25]  Olaya, A., Moreno, S., and Molina, R. (2009). “Synthesis of pillared clays with aluminum by means of concentrated suspensions and microwave radiation”. Catalysis Communications, 10(5): 697-701.

[26]  Sanabria, N. R., Centeno, M. A., Molina, R., and Moreno, S. (2009). “Pillared clays with Al–Fe and Al–Ce–Fe in concentrated medium: synthesis and catalytic activity”. Applied Catalysis A: General, 356(2): 243-249.

[27]  Tomul, F. (2011). “Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite”. Applied Surface Science, 258(5): 1836-1848.

[28]  Tomul, F. (2016). “The effect of ultrasonic treatment on iron–chromium pillared bentonite synthesis and catalytic wet peroxide oxidation of phenol”. Applied Clay Science,120: 121-134.

[29]  Novikova, L, Philippe, A., Claude, F., Gregory Chatel, F., Jérôme, and Larisa, B. (2016). “Effect of low frequency ultrasound on the surface properties of natural aluminosilicates”. Ultrasonics sonochemistry, 31: 598-609.

[30]  Sassi, H., Gwendoline, L., Hédi, B. A., Abdelaziz, G., Mohamed, R. J, and Jacques, B. (2018). “Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation”. Frontiers of Environmental Science & Engineering, 12(1): 2.

[31]  Magriotis, Z. M., Leal, P. V., Priscila, F., Papini, R. M., Viana, P. R., and Arroyo, P. A. (2014). “A comparative study for the removal of mining wastewater by kaolinite, activated carbon and beta zeolite”. Applied Clay Science, 91: 55-62.

[32]  Liu, Y. N., Dong, C., Wei, H., Yuan, W., and Li, K. (2015). “Adsorption of levofloxacin onto an iron-pillared montmorillonite (clay mineral): kinetics, equilibrium and mechanism”. Applied Clay Science, 118: 301-307.

[33]  Timofeeva, M. N., Khankhasaeva, S. T., Chesalov, Y. A. , Tsybulya, S. V., Panchenko, V. N., and Dashinamzhilova, E. T. (2009). “Synthesis of Fe, Al-pillared clays starting from the Al, Fe-polymeric precursor: Effect of synthesis parameters on textural and catalytic properties”. Applied Catalysis B: Environmental, 88(1-2): 127-134.

[34]  Manohar, D., Noeline, B., and Anirudhan, T. (2006). “Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase”. Applied Clay Science, 31(3-4): 194-206.

[35]  Mohapatra, D., Mishra, D., Chaudhury, G. R., and Das, R. P. (2007). “Arsenic adsorption mechanism on clay minerals and its dependence on temperature”. Korean Journal of Chemical Engineering, 24(3): 426-430.

[36]  Wu, C. H., Kuo, C. Y., Lin, C. F., and Lo, S. L. (2002). “Modeling competitive adsorption of molybdate, sulfate, selenate, and selenite using a Freundlich-type multi-component isotherm”. Chemosphere, 47(3): 283-292.

[37]  Sadik, R., Lahkale, R., Hssaine, N., ElHatimi, W., Diouri, M., and Sabbar, E. (2015). “Sulfate removal from wastewater by mixed oxide-LDH: Equilibrium, kinetic and thermodynamic studies”. Journal of Material Environment and Science, 6(10): 2895-2905.

[38]  Horányi, G. (2003). “Investigation of the specific adsorption of sulfate ions on powdered TiO2”. Journal of Colloid and Interface Science, 261(2): 580-583.

[39]  Alves, M. and Lavorenti, A. (2004). “Sulfate adsorption and its relationships with properties of representative soils of the São Paulo State, Brazil”. Geoderma, 118(1-2): 89-99.

[40]  Delfosse, T., Delmelle, P., and Delvaux, B. (2006). “Sulphate sorption at high equilibrium concentration in Andosols”. Geoderma, 136(3-4): 716-722.

[41]  Khan, M. N., and Zareen, U. (2006). “Sand sorption process for the removal of sodium dodecyl sulfate (anionic surfactant) from water”. Journal of Hazardous Materials, 133(1-3): 269-275.

[42]  Li, W. G., Gong, X. J., Wang, K., Zhang, X. R., and  Fan, W. B. (2014). “Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon”. Bioresource Technology, 165: 166-173.

[43]  Pimentel, P. M., Melo, M. A. F., Melo, D. M. A., Assuncao, A. L. C., Henrique, D. M., Silva Jr, C. N., and Gonzalez, G. (2008). “Kinetics and thermodynamics of Cu (II) adsorption on oil shale wastes”. Fuel Processing Technology, 89(1): 62-67.