مطالعه ژئوشیمیایی گاز و میعانات گازی مخازن دالان و کنگان

نویسندگان

1 استاد، دانشکده مهندسی نفت دانشگاه صنعتی امیرکبیر

2 استادیار، دانشگاه سمنان

چکیده

مطالعه ژئوشیمیایی23 نمونه گاز و میعانات گازی مخازن دالان و کنگان متعلق به 12 میدان در محدوده­ فارس ساحلی و بخش مرکزی خلیج فارس نشان می­دهد، مواد آلی منشا گازهای موجود در این مخازن از نوع دریایی (کروژن نوع II) است که در دمای بین 150 الی 180 درجه سانتی­گراد در اثر شکست حرارتی نفت به گاز تولید شده­اند. گازهای موجود در میادین واقع در نواحی جنوبی‌تر در مقایسه با سایر میادین دارای بلوغ کمتر هستند که این نکته در کنار کشف نفت در چند‌سال اخیر در این نواحی مانند نفت سبک میادین عسلویه شرقی و خیام نشان‌ دهنده نفت­های اولیه باقی‌مانده در این مخازن است که در سایر مخازن به علت افزایش حرارت مخزن به گاز تبدیل شده‌اند. سنگ مادر مولد گازهای موجود در مخازن کنگان و دالان در منطقه مورد مطالعه در محدوده­ بلوغ 1/1 تا 8/1 انعکاس ویترینایت معادل قرار دارد. با توجه به میزان قابل توجه مواد‌آلی در سازند سرچاهان و شباهت منحنی ایزوتوپی مواد آلی این سازند با منحنی ایزوتوپی کندانست و نفت مخازن دالان و کنگان،‌ سازند سرچاهان می‌تواند مهمترین گزینه سنگ مولد مخازن گازی منطقه باشد، البته شواهدی از مشارکت افق­های شیلی سازند کنگان در زایش بخشی از گاز موجود در افق­های دالان فوقانی و کنگان دیده می‎شود.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemical study of Dalan and Kangan gas-condensate reservoirs in the south of Iran

نویسندگان [English]

  • AR. Rabbani 1
  • MH. Saberi 2
1 Professor, AmirKabir University of Technology
2 Associate Professor, Semnan University
چکیده [English]

According to the geochemical study done on the 23 gas samples taken from 12 gas fields in the coastal Fars and central part of the Persian Gulf, Dalan and Kangan reservoirs consist of thermogenic gases, which were generated from the cracking of oil in temperature between 150°C and 180°C. Gas fields in the southern part of the studied area have lower maturity in comparison to the other parts. Recent oil exploration studies show that the light crude oil in Eastern Assaluyeh and Khayyam fields could be an indicative of original oil remaining in these fields which is converted into gas in other fields, due to temperature increment. Using the stable isotope maturity for methane and ethane suggested a source rock with maturity level of about 1.0% to 1.8% vitrinite reflectance for the field gas under study. According to the TOC content and similarity between the isotope curve of organic matter of rock samples and those of the condensate – oil reservoir of Dalan and Kangan, the lower silurian Sarchahan organic-rich shale could be the main source for hydrocarbons in Permian and Triassic reservoirs in this area.

کلیدواژه‌ها [English]

  • Dalan and Kangan
  • Thermogenic
  • Sarchahan
  • Thermal Cracking
[1]     Rabbani, A. R. (2013). “Petroleum Geology and Geochemistry of the Persian Gulf”. Tafresh University     Academic Press, pp.575.

[2]     Galimove, E. M., and Rabbani, A. R. (2001). “Geochemical characteristics and origin of natural gas in southern Iran”. Geochemistry International, 89(8): 780-792.

[3]     Saberi, M. H., and Rabbani, A. R. (2015). Origin of natural gases in the Permo-Triassic reservoirs of the Coastal Fars and Iranian sector of the Persian Gulf”. Journal of Natural Gas Science and Engineering, 26: 558-569.

[4]     Saberi, M. H., Rabbani, A. R., and Gavidel Syooki, M. (2016). Hydrocarbon Potential and Palynological Study of the Latest Ordovician – Earliest Silurian Source Rock (Sarchahan Formation) in the Zagros Mountains, Southern Iran”. Marine and Petroleum Geology, 71: 12-25.

[5]     Kashfi, M. S. (1992). “Geology of the Permian super giant gas reservoir in the greater Persian Gulf area”. Journal of Petroleum Geology, 15: 465-480.

[6]     Aali, J., Rahimpour-Bonab, H., and Kamali, M. R. (2006). “Geochemistry and origin of the world's largest gas field from Persian Gulf, Iran”. Journal of Petroleum Science and Engineering, 50: 161-175.

[7]     Bordavov, M. L. (2008). The origin of the Permo-Triassic gas accumulations in the Iranian Zagros Foldbelt and contiguous offshore areas: A Review of the Palaeozoic Petroleum System. Journal of Petroleum Geology, 31: 3-42.

[8]     Bernard, B. B., Brooks, J. M., and Sackett, W. M. ( 1978). “Light hydrocarbons in recent Texas continental shelf and slope sediments”. Journal of Geophysical Research, 83: 4053–4061.

[9]     Whiticar, M. J. (1996). “Stable isotope geochemistry of coals, humic kerogens and related natural gases”. International Journal of Coal Geology, 32: 191-215.

[10]  Chung, H. M., Gormly, J. R., and Squires, R. M. (1988). “Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution”. In: Schoell M. (Ed.), Origin of Methane in the Earth. Chemical Geology, 71: 97–103.

[11]  Lorant, F., Prinzhofer, A., Behar, F. and Huc, A.Y. (1998). “Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases”. Chemical Geology, 147: 249–264.

[12]  Clayton, C. (1991). “Carbon isotopic fractionation during natural gas generation from kerogen”. Mar.Petrol. Geology.8, 232-240.

[13]  Galimov, E. M. (1989). “Sources and Mechanisms of Gaseous Hydrocarbon Generation in Sedimentary Rocks”. Geokhimiya, , 2: 163-180.

[14]  Zaho, W., Zhang, S., Wang, F., Chen, J., Xiao, Z., and Song, F. (2005). “Gas accumulation from oil cracking in the eastern Tarim Basin. A case study of the YN2 gas f”. Organic Geochemistry, 36(12): 1602–1616.

[15]  احمدرضا ربانی؛ 1386؛ "ژئوشیمی گازهای غیر هیدروکربنی مخازن گاز طبیعی"، انتشارات دانشگاه صنعتی امیرکبیر، 170 صفحه.