تشویه قلیایی در مخلوط گل‌قرمز-سدیم کربنات پس از آسیاکاری

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج

2 دانشیار، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج

3 استادیار، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج

چکیده

در این پژوهش پس از تهیه نمونه گِل قرمز از شرکت آلومینای ایران (جاجرم) و تعیین ویژگی‌های آن، آزمایش‌های شیمیایی و فازیابی به روش‌های XRF و XRD انجام شد. سپس آسیاکاری مکانیکی مخلوط‌های گل قرمز-کربنات سدیم در زمان‌های 15 دقیقه، 2 ساعت و 5 ساعت صورت پذیرفت. آزمون‌های گرماسنجی هم‌زمان بر روی نمونه گل قرمز و مخلوط‌های حاصل از آسیاکاری در اتسمفر هوا تا دمای حدود 900 درجه سانتی‌گراد و با نرخ گرمایش 20 درجه در دقیقه انجام شد. کاهش جرم نمونه گل قرمز حدود 25/13 درصد و برای مخلوط‌های آسیاکاری در بازه 23 تا 26 درصد قرار دارد. تشویه قلیایی مخلوط‌ها نیز با گرمایش در محدوده دمایی ‌600 تا 900 درجه سانتی‌گراد، تحت فشار یک اتمسفر و به‌مدت یک ساعت انجام شد. نشانه فازهای NaAlO2، NaAlSiO4 و ‌NaFeO2 در الگوهای XRD نمونه‌های حاصل از تشویه قلیایی مشاهده شد. در مخلوط‌های گل قرمز-کربنات سدیم حاصل از آسیاکاری، این فازها شناسایی نشدند و پهن‌شدگی نقاط اوج نمودار و از بین رفتن نشانه کربنات سدیم با افزایش زمان آسیاکاری، رویداد غالب بود. فروشویی نمونه‌های تشویه‌شده با آب در دمای حدود 80 درجه سانتی‌گراد و زمان ‌60 دقیقه منجر به انحلال فاز NaAlO2 گردید و نشانه‌ای از این فاز در باقی‌مانده جامد پس از فروشویی مشاهده نشد. غلظت آهن در محلول‌های حاصل از فروشویی به روش آزمون جذب اتمی بسیار ناچیز بود. نتایج نشان داد در اثر تشویه قلیایی گل قرمز با کربنات سدیم و انحلال محصول جامد تشویه در آب، امکان جداسازی آلومینیوم از آهن و یا ترکیبات محتوی آهن فراهم می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Alkaline Roasting of a Red Mud–Sodium Carbonate Mixture After Milling

نویسندگان [English]

  • V. Niknezhad 1
  • N. Setoudeh 2
  • R. Hayati 2
  • Sh. Pashangeh 3
1 M.Sc Student, Dept. of Materials Engineering, School of Engineering, Yasouj University,Yasouj, Iran
2 Associate Professor, Dept. of Materials Engineering, School of Engineering, Yasouj University, Yasouj, Iran
3 Assistant Professor, Dept. of Materials Engineering, School of Engineering, Yasouj University, Yasouj, Iran
چکیده [English]

After preparing a red mud sample from Iran Alumina Company (Jajarm) and determining its parameters, the chemical analysis and phase evaluations were undertaken using XRF and XRD methods. Mechanical milling of red mud-sodium carbonate mixtures was done for 15 minutes, 2 and 5 hours. STA analysis of the red mud sample and as-milled mixtures was undertaken under an air atmosphere up to 900 ºC with a heating rate of 20 ºC/min. The results showed the mass loss of red mud is about 13.25%, whilst it is in the range of 23-26% for milled mixtures. The alkaline roasting was done by heating the mixtures at the temperature range of 600-900 ºC under an air atmosphere for one hour. The traces of NaAlO2, NaAlSiO4 and NaFeO2 phases were observed in the XRD patterns of the alkaline roasted samples. The signs of these phases were not observed in the milled mixtures of red mud-sodium carbonate; however the peak broadening and disappearing of the signs of sodium carbonate were the major events with increasing the milling time. Leaching of the alkaline roasted samples with water at 80 ºC for 60 minutes resulted in the dissolution of NaAlO2 phase, and the traces of this phase are not observed in the solid residues after leaching. The iron concentration was trace in the leached solutions by the AAS method. The results indicated that alkaline roasting of red mud with sodium carbonate, followed by dissolving the roasted solid products in water, makes it possible to separate the contained aluminium from iron and iron compounds.

کلیدواژه‌ها [English]

  • Bauxite
  • Bayer process
  • Mechanical milling
  • Red mud
  • Sodium Aluminate
  1. Klauber, C., Gräfe, M., and Power, G. (2011). “Bauxite residue issues: II. options for residue utilization”. Hydrometallurgy, 108: 11-32.
  2. Kumar, S., Kumar, R., and Bandopadhyay, A. (2006). “Innovative methodologies for the utilisation of wastes from metallurgical and allied industries”. Resources, Conservation and Recycling, 48(1): 301-314.
  3. Li, X-F., Zhang, T-A., Lv, G-Z., Wang, K., and Wang, S. (2023). “Summary of research progress on metallurgical uilization technology of red mud”. Minerals, 13(6): 737. DOI: https://doi.org/10.3390/min13060737.
  4. Sutar, H., Mishra, S. C., Sahoo, S. K., Chakraverty, A. P., and Maharana, H. S. (2014). “Progress of red mud utilization: An overview”. American Chemical Science Journal, 49(3): 255-279.
  5. Wang, S., Ang, H. M., and Tadé, M. O. (2008). “Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes”. Chemosphere, 72(11): 1621-1635.
  6. Al-Fakih, A., Mohamed Nor, Z., Inayath Basha, Sh., Nasiruzzaman Shaikh, M., Ahmad, Sh., Al-Osta, M. A., and Abdul Aziz, M. D. (2023). “Characterization and applications of red mud, an aluminum industry waste material, in the construction and building industries, as well as catalysis”. The Chemical Record, 23: e202300039 (1 of 32).
  7. Mi, H.,Yi, L.,Wu, Q., Xia, J., and Zhang, B. (2022). “A review of comprehensive utilization of red mud”. Waste Management and Research, 40(11): 1594-1607.
  8. Lingxiang, H., Chunlei, L. I., Haibin, W., Xingxing, L. I., Yongrong, Q. I., and Xuechen, Z. H. U. (2021). “Research progress on comprehensive utilization of red mud”. Journal of Physics: Conference Series, vol. 2009, 3rd International Conference on Polymer Syntheis and Application (ICPSA 2021), 23-25 July 2021, Nanjing, China, 01202.
  9. Gräfe, M., Power, G., and Klauber, C. (2011). “Bauxite residue issues: III. Alkalinity and associated chemistry”. Hydrometallurgy, 108(1-2): 60-79.
  10. Xie, W., Zhang, N., Li, J., Zhou, F., Ma, X., Gu, G., and Zhang, W. (2017). “Optimization of condition for extraction of aluminum and iron from red mud by hydrochloric acid leaching”. Chinese Journal of Environmental Engineering, 11(10): 5677-5682.
  11. Wei, D., Jun-Hui, X.,Yang, P., Si-Yue, S., and Tao, C. (2021). “Iron Extraction from Red Mud using Roasting with Sodium Salt”. Mineral Processing and Extractive Metallurgy Review, 42(3): 153-161.
  12. Grudinsky, P., Zinoveev, D.,Yurtaeva, A., Kondratiev, A., Dyubanov, V., and Petelin, A. (2021). “Iron recovery from red mud using carbothermic roasting with addition of alkaline salts”. Journal of Sustainable Metallurgy, 7: 858-873.
  13. Liu, Z., and Li, H. (2015). “Metallurgical process for valuable elements recovery from red mud—A review”. Hydrometallurgy, 155: 29-43.
  14. Safarian J., and Kolbeinsen L. (2016). “Smelting-reduction of bauxite for sustainable alumina production”. Smelting- In: Kongoli, F., Senchenko, A., Klein, B., Silva, A. C., Sun, C., Mingan, W., (Eds.), Sustainable Industrial Processing Summit SIPS 2016 Volume 5: Starkey Intl. Symp. / Mineral Processing, Volume 5, Montreal (Canada): FLOGEN Star Outreach, 149-158.
  15. Zhu, X-F., Zhang, T-A., Wang, Y-X., Lü, G-Z., and Zhang,W-G. (2016). “Recovery of alkali and alumina from Bayer red mud by the calcification–carbonation method”. International Journal of Minerals, Metallurgy, and Materials, 23(3): 257-268.
  16. Cardenia, C., Balomenos, E.,Wai, P., Tam, Y., and Panias, D. (2021). “A Combined soda sintering and microwave reductive roasting process of bauxite residue for iron recovery”. Minerals, 11(2): 222.
  17. Tam, P. W. Y., Panias, D., and Vassiliadou, V. (2019). “Sintering optimisation and recovery of aluminum and sodium from Greek bauxite residue”. Minerals, 9(10): 571.
  18. Khodadadi Bordboland, R., Azizi, A., and Khani, M. R. (2024). “Extracting alumina from a low-grade (Shale) bauxite ore using a sintering process with Lime-soda followed by alkali leaching”. Journal of Mining and Environment (JME), 15(3): 1131-1148.
  19. Ghaemmaghami, E., Samadzadeh Yazdi, M. R., Darvishi, M. A., Sadati, A. A., and Najafi, A. (2022). “Alumina extraction by lime-soda sinter process from low-grade bauxite soil of Semirom Mine”. Journal of Mining and Environment (JME), 13(4): 1159-1169.
  20. Sun, Y., Pan, A., Ma, Y., and Chang, J. (2023). “Extraction of alumina and silica from high-silica bauxite by sintering with sodium carbonate followed by two-step leaching with water and sulfuric acid”. RSC Advances, 13: 23254-23266.
  21. Yan, K., Guo, Y., Fang, L., Cui, L., F. Cheng, F., and Li, T. (2017). “Decomposition and phase transformation mechanism of kaolinite calcined with sodium carbonate”. Applied Clay Science, 147: 90-96.
  22. Liu, W., Sun, S., Zhang, L., Jahanshahi, S., and Yang, J. (2012). “Experimental and simulative study on phase transformation in Bayer red mud soda-lime roasting system and recovery of Al, Na and Fe”. Minerals Engineering, 39: 213-218.
  23. HSC, Version 6.12, Outotec Research Oy, (2007).
  24. Sun, Y., Pan, A., Ma, Y., Chang, J., Li, K., and Hu, S. (2022). “Activation mechanism of diasporic bauxite calcined with sodium carbonate”. Minerals Engineering, 187: 107782.
  25. Pei, J., Pan, X., Zhang, Y., Yu, H., and Tu, G. (2021). “A novel process to fully utilize red mud based on low-calcium sintering”. Journal of Environmental Chemical Engineering, 9: 106754.
  26. Thompson, J. G., Melnitchenko, A., Palethorpe, S. R., and Withers, R. L. (1997). “An XRD and Electron Diffraction Study of Cristobalite-Related Phases in the NaAlO2–NaAlSiO4 System”. Journal of Solid State Chemistry, 131(1997): 24-37.
  27. Li, X-B., Liu, J. H., Wang, Y-L., Zeng, L., Peng, Z. H., Liu, G. H., Zhou, Q., and Qi, T. G. (2018). “Phase transformation of sodium hydrate alumino-silicate in alumina sintering process”. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 28(6): 1225-1232.
  28. Nouri Kohan, O., Setoudeh, N., and Hayati, R. (2025). “Study the phase changes and formation conditions of the sodium aluminate phase in the alkaline roasting process of the bauxite under mechanical milling and heating conditions”. Journal of Metallurgical and Materials Engineering, 36(1): 29-48.
  29. Niknezhad, V., Setoudeh, N., Hayati, R., and Pashangeh, Sh. (2025). “The phase changes in the red mud after heating and acid washing”. 4th International Conference and 8th National Conference on Materials, Metallurgy, Mining, Feb. 5, 2025, Ahvaz, Iran. maei 2025-01450122.
  30. Seifpanahi-Shabani, K., Abedi, A., and Tabari, M. (2019). “Application of bauxite waste as a nano-absorbent mineral to removal of copper and manganese metalic contaminants from the acid mine drainage”. Journal of Mineral Resources Engineering, 4(3): 105-115.
  31. Rahimi, S., and Irannajad, M. (2024). “Review on using red mud (waste of aluminum production process from bauxite) as an absorbent of various environmental contaminants”. Nashrieh Shimi va Mohandesi Shimi Iran, 43(3): 25-50.
  32. Navi, N., Karamoozian, M., and Khani, M. R. (2023). “Recovery of Iron from bauxite red mud by reduction roasting method”. Journal of Mining and Environment, 14(4): 1295-1305.
  33. Haddady, H., Setoudeh, N., Mohassel, A., and Hayati, R. (2024). “Investigating the effect of ball milling and heating processes on the phase changes of an Iranian type of bauxite”. Journal of Advanced Materials in Engineering (Esteghlal), 42(4): 61-76.
  34. Suryanarayana, C. (2004). “Mechanical Alloying and Milling”. CRC Press, Marcel Dekker, 270 Madison Avenue, New York, NY 10016, USA.
  35. Takeda, Y., Akagi, J., Edagawa, A., Inagaki, M., and Naka, S. (1980). “A preparation and polymorphic relations of sodium iron oxide (NaFeO2)”. Materials Research Bulletin, 15: 1167-1172.
  36. Yanase, I., Onozawa, S., Ogasawara, K., and Kobayashi, H. (2018). “A novel application of α- and β-sodium ferrite as a CO2-capturing solid in air with water vapor”. Journal of CO2 Utilization, 24: 200-209.