اثر بازه مشتق‌گیری در تحلیل نمودار فشار گذرای بُعددار در شرایط مختلف چاه‌های نفت

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی نفت، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران

2 دانشیار، گروه مهندسی نفت، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران

چکیده

چاه‌‌آزمایی ابزاری دقیق برای ارزیابی توان تولیدی چاه‌ها و بهبود روش‌های بهره‌برداری از مخازن نفتی به‌شمار می‌رود. مخزن نفت، محیطی نا‌شناخته و نا‌همگن است که شناخت کامل و دقیق آن به‌طور مستقیم امکان‌پذیر نیست. از این رو، چاه‌آزمایی با بررسی تغییرات فشار و دبی درون چاه، اطلاعات ارزشمندی از رفتار مخزن فراهم می‌‌کند. پس از انجام هر آزمون چاه‌آزمایی روی مخازن، داده‌های فشار و زمان بر روی نمودار‌هایی با مختصات لگاریتمی، نیمه‌لگاریتمی یا دکارتی ترسیم می‌شوند و سپس این نمودار‌ها با مدل‌های اولیه، مقایسه و تفسیر شده و اطلاعاتی همچون نوع رژیم جریان (رژیم‌های خطی، شعاعی و کروی بر اساس خطوطی با شیب‌های 0، 25/0، 5/0 و 1) و مساحت مخزن محاسبه می‌شوند. این مقاله‌ به بررسی نمودارهای تحلیل فشاری گذرای بُعددار با تکیه بر مفهوم مشتق فشار نسبت به زمان در مقیاس لگاریتمی پایه‌ 10 می‌پردازد. با معرفی پارامتری به نام آلفا، نمودارهای مخازن ترسیم شده و تأثیر مقدار بیشینه این پارامتر، بر رفتار نمودارهای مختلف مشتق فشار مقایسه و بررسی شده است. نتایج این پژوهش نشان می‌دهد که معمولاً با در نظر گرفتن مقدار بیشینه پارامتر آلفا در نمودار‌های مشتق، در اغلب داده‌های خام فشار و مشتق آن‌ها در تحلیل فشاری گذرای بُعددار، تغییراتی در میزان و جدایی نقاط انتهایی نمودار مشتق حاصل می‌گردد. این نقاط که به عنوان «اثر پایانی» شناخته می‌شوند، بیانگر پایان رفتار گذرا و پایداری مشتق فشاری هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of the Derivative Interval on Dimensioned Pressure Transient Analysis under Different Oil Well Conditions

نویسندگان [English]

  • A.M. Jahani 1
  • S. Jamshidi 2
1 M.Sc Student, Dept. of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
2 Associate Professor, Dept. of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
چکیده [English]

There is no doubt that Well Testing is known for its powerful capacity to detect the production values of drilled wells and to optimize their production methods from oil reservoirs, due to pressure and rate variations inside the wells. Oil reservoirs are heterogeneous and unknown hydrocarbon formations that require precise evaluation and specialized techniques for better understanding. After applying Well Testing on each drilled well in real reservoirs, pressure and time data are plotted together on different diagrams using logarithmic, semi-logarithmic, or Cartesian scales. These plots allow us to interpret initial models and extract important factors such as Flow Regime Types (linear, radial, or spherical, based on plotting different straight lines with slopes of 1, 0.5, 0.25, and 0) and the area of the reservoir, among others. In this paper, we focus on Dimensional Pressure Transient Analysis Diagrams and their derivative diagrams based on the common logarithm scale. We have defined a variable Alpha parameter and a constant Alpha parameter (the maximum variable Alpha parameter) in Python code. The constant Alpha parameter in fractured reservoirs is higher than in ideal oil reservoirs. Using these parameters, we plot different PTA diagrams under various conditions to perform critical comparisons. The results indicate that assuming a constant Alpha parameter on pressure derivative plots shows greater spacing between the final points of the pressure derivative diagrams, known as “End Effect” points, clearly demonstrating the constant behavior of the pressure derivative points at the end.

کلیدواژه‌ها [English]

  • Alpha parameter
  • Pressure transient analysis
  • Pressure derivative
  • Logarithmic scale
  1. Agarwal, R. G., Al-Hussainy, R., and Ramey Jr, H. J. (1970). “An investigation of Wellbore Storage and skin effect in unsteady liquid flow: 1. Analytical treatment”. Society of Petroleum Engineers Journal, 10(3): 279-290.
  2. Tiab, D., and Kumar, A. (1980a). “Application of PD′ function to interference analysis”. Journal of Petroleum Technology, 32: 1465-1470.
  3. Zarrouk, S. J., and McLean, K. (2019). “Geothermal Well Test Analysis: Fundamentals, Applications and Advanced Techniques”. Elsevier, Chapter 2, 13-38. DOI: https://doi.org/10.1016/C2017-0-02723-4.
  4. Clark, D. G., and Van Golf-Racht, T. D. (1985). “Pressure derivative approach to transient test analysis: a high permeability north sea reservoir example Example (includes associated papers 15270 and 15320) ”. Journal of Petroleum Technology, 37: 2023-2039. DOI: https://doi.org/10.2118/12959-PA.
  5. Horne, N. (1990). “Modern Well Test Analysis”. Petroway Inc., Palo Alto, CA.
  6. Hu, P., Geng, S., Liu, X., Li, C., Zhu, R., and He, X. (2023). “A three-dimensional numerical pressure transient analysis model for fractured horizontal wells in shale gas reservoirs”. Journal of Hydrology, 620(Part B): 129545.
  7. Dastkhan, Y., and Kazemi, A. (2021). “The impact of isothermal flow assumption on accuracy of pressure transient analysis results”. The Canadian Journal of Chemical Engineering, 100(5): 1050-1060. DOI: https://doi.org/10.1002/cjce.24208.
  8. Dastkhan, Y., Kazemi, A., and Al-Maamari, R. S. (2022). “Well and Reservoir characterization using combined temperature and Pressure Transient Analysis: A case study”. Results in Engineering, 15: 100488.
  9. Guo, Y., Mohamed, I., Zidane, A., Panchal, Y., and Abou-Sayed, O. (2021). “Automated pressure transient analysis: A cloud-based approach”. Journal of Petroleum Science and Engineering, 196: 107627.
  10. Egya, D. O., Corbett, P. W., Geiger, S., Norgard, J. P., and Hegndal-Andersen, S. (2022). “Calibration of naturally fractured reservoir models using integrated well-test analysis–an illustration with field data from the Barents Sea”. Petroleum Geoscience, 28(1): petgeo2020-042.
  11. Houz’e, O., Viturat, D., and Fjaere, O. S. (2021). “Dynamic Data Analysis: The theory and practice of Pressure Transient Analysis, Rate Transient Analysis, Formation Testing, Production Logging and the use of Permanent Downhole Gauges”. KAPPA Engineering, Version 5.40.01, Paris, Jan 2021, pp. 778.
  12. Al Qahtani, A. M., and Al Qahtan, B. A. (2022). “A New Application of Pressure Transient Analysis to Calculate Completion Efficiency in Long Horizontal Wells with Limited Entries: Flow Restrictions and Well Architecture”. Paper Presented at the ADIPEC, Abu Dhabi, UAE, October 2022. DOI: https://doi.org/10.2118/211564-MS.
  13. Mosaheb, M., and Zeidouni, M. (2020). “Pressure Transient Analysis to Determine Anisotropic Fault Leakage Characteristics”. Journal of Hydrologic Engineering, 25(11). DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0002002.
  14. Geng, S., Li, C., Li, Y., Zhai, S., Xu, T., Gong, Y., and Jing, M. (2023). “Pressure transient analysis for multi-stage fractured horizontal wells considering threshold pressure gradient and stress sensitivity in tight sandstone gas reservoirs”. Gas Science and Engineering, 116: 205030.
  15. Wei, C., Cheng, S., Wang, Y., Shi, W., Li, J., Zhang, J., and Yu, H. (2021). “Practical pressure-transient analysis solutions for a well intercepted by finite conductivity vertical fracture in naturally fractured reservoirs”. Journal of Petroleum Science and Engineering, 204: 108768.
  16. Wu, M., Ding, M., Yao, J., Xu, S., Li, L., and Li, X. (2018). “Pressure transient analysis of multiple fractured horizontal well in composite shale gas reservoirs by boundary element method”. Journal of Petroleum Science and Engineering, 162: 84-101.
  17. Eyad Aldiwan, J. (2017). “Extending the utilization of real time data for Pressure Transient Analysis”. Graduate Theses, Dissertations, and Problem Reports. 3987, pp. 48
  18. Hernandez, R. F., Younes, A., Fahs, M., and Huteit, H. (2023). “Pressure transient analysis for stress-sensitive fractured wells with fracture face damage”. Geoenergy Science and Engineering, 221: 211406.
  19. Aydin, H., Merey, S., and Akin, S. (2024). “Pressure Transient Analysis of Alaşehir Geothermal Reservoir”. In Conference: 49th Stanford Geothermal Workshop, Stanford University.
  20. Mohammed, I., Olayiwola, T. O., Alkathim, M., Awotunde, A. A., and Alafnan, S. F. (2021). “A review of pressure transient analysis in reservoirs with natural fractures, vugs and/or caves”. Petroleum Science, 18: 154-172. DOI: https://doi.org/10.1007/s12182-020-00505-2.
  21. Wong, B., Zhang, Q., Yao, S., and Zeng, F. (2022). “A semi-analytical mathematical model for the pressure transient analysis of multiple fractured horizontal well with secondary fractures”. Journal of Petroleum Science and Engineering, 208: 109444.
  22. Zhang, L., Yin, F., Liang, B., Cheng, S., and Wang, Y. (2022). “Pressure Transient Analysis for the Fractured Gas Condensate Reservoir”. Energies, 15(24): 1-15.
  23. Abdalla, K. A., Khattab, H., Tantawy, M., and Mohamed, I. S. (2024). “Enhancing pressure transient analysis in reservoir characterization through deep learning neural networks”. Discover Applied Sciences, 6: 473.
  24. Abdulkadhim, S. T., and Al-Obaidi, D. A. (2023). “A Review on Pressure Transient Analysis in Multilayer Reservoir: South Iraq Case Study”. Iraqi Geological Journal, 56(2E): 222-243.
  25. Cheng, L.-S., Cao, C., Pan, Q.-Y., Jia, P., Cao, R.-Y., Wang, Z.-K., and Shi, J.-J. (2024). “A semi-analytical pressure and rate transient analysis model for inner boundary and propped fractures exhibiting dynamic behavior under long-term production conditions”. Petroleum Science, 21(4): 2520-2535.
  26. Cui, Q., Zhao, Y., Zhang, L., Chen, M., Gao, S., and Chen, Z. (2023). “A semi-analytical model of fractured horizontal well with hydraulic fracture network in shale gas reservoir for Pressure Transient Analysis”. Advances in Geo-Energy Research, 8(3): 193-205.
  27. Tiab, D. (April 1994). “Analysis of pressure and pressure derivative without type-curve matching: Vertically fractured wells in closed systems”. Journal of Petroleum Science and Engineering, 11(4): 323-333.
  28. Idudje, E. H., and Adewole, E. S. (July 2020). “A new test analysis procedure for pressure drawdown test of a horizontal well in an infinite-acting reservoir”. Nigerian Journal of Technology (NIJOTECH), 39(3): 816-820.