تعیین ساختارهای الکتریکی زیرسطحی جنوب سبلان با وارون‌سازی دو‌بعدی داده‌های مگنتوتلوریک با روش اجزاء محدود تطبیقی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دکتری، گروه اکتشاف معدن، دانشکده معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود

2 استاد، گروه نفت و ژئوفیزیک، دانشکده معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود

3 دانشیار، گروه اکتشاف معدن، دانشکده معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود

4 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل

5 دکتری، شرکت انرژی‌‌های تجدیدپذیر و بهره‌وری انرژی برق، تهران

چکیده

وجود چشمه‌های آب گرم متعدد در منطقه سبلان، این منطقه را به مکانی بسیار مطلوب برای اکتشافات زمین‌گرمایی تبدیل کرده است. در این مقاله از داده‌های مگنتوتلوریک برای شناسایی منشأ حرارتی منابع زمین‌گرمایی در بخش جنوبی قله آتشفشانی سبلان استفاده شده ‌است. برای این منظور از 13 ایستگاه داده مگنتوتلوریک در امتداد یک پروفیل و با فواصل ایستگاهی مختلف استفاده شده است. به‌دلیل اینکه ماگما نسبت به سنگ‌های میزبان مقاومت‌ویژه کمتری دارد، لذا با روش‌ مگنتوتلوریک قابل شناسایی است. آنالیز تعیین ابعادی نشان داد که از سطح زمین تا عمق‌های متوسط، ساختارهای یک و دوبعدی وجود دارد و در اعماق زیاد ساختارها به شکل سه‌بعدی هستند. وارون‌سازی همسانگرد دوبعدی با استفاده از روش اجزای محدود تطبیقی که برای وارون‌سازی و کمینه‌سازی تابع هدف از روش اُکام سریع استفاده می‌کند، انجام شده است. برای ارزیابی ساختار رسانای آشکار شده در مدل نهایی، تحلیل حساسیت انجام شد و نتایج آن نشان داد که ساختار شناسایی شده دقت و قابلیت اعتماد بالایی دارد. مدل بدست آمده از وارون‌سازی دوبعدی نشان داد که یکی از منشأهای حرارتی سامانه زمین‌گرمایی از جنوب قله سبلان سرچشمه می‌گیرد و انتقال سیالات با دمای بسیار بالا، توسط گسل خوردگی‌های موجود در جنوب به سمت شمال غرب سبلان کنترل می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of Subsurface Electrical Structures in Southern Sabalan Using Two-Dimensional Inversion of Magnetotelluric Data with the Adaptive Finite Element Method

نویسندگان [English]

  • M. Filbandi Kashkouli 1
  • A. Kamkar-Rouhani 2
  • A.R. Arab-Amiri 3
  • M. Seyedrahimi-Niaraq 4
  • M.R. Rahmani 5
1 Ph.D, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
2 Professor, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
3 Associate Professor, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
4 Assistant Professor, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
5 Ph.D, Renewable Energy and Energy Efficiency Organization, Tehran, Iran
چکیده [English]

The presence of numerous hot springs in the Sabalan region makes it a highly favorable area for geothermal exploration. In this study, magnetotelluric (MT) data were used to investigate the thermal origin of geothermal resources in the southern part of the Sabalan volcanic region. For this purpose, data from 13 MT stations along a survey line with varying station spacing were employed. Since magma exhibits lower electrical resistivity compared to the surrounding host rocks, it can be detected through the magnetotelluric method. Dimensionality analysis revealed shallow-to-medium-depth structures dominated by one-dimensional (1D) and two-dimensional (2D) geometries, while deeper structures exhibited three-dimensional (3D) complexity. A 2D isotropic inversion was performed using an adaptive finite element method, incorporating rapid Occam inversion to minimize the objective function. Sensitivity analysis was conducted to evaluate the reliability of the conductive structures resolved in the final model, confirming high accuracy and robustness. The model resulting from 2D inversion of the MT data demonstrates that one of the thermal sources of the geothermal system originates from the southern part of the Sabalan region. Furthermore, the migration of high-temperature fluids is controlled by fault-induced fractures in the southern part of the region, directing the fluids toward the northwest.

کلیدواژه‌ها [English]

  • Magnetotelluric (MT)
  • Inversion
  • Adaptive finite element
  • Geothermal
  • Sabalan
  1. KML, (1997). “Sabalan geothermal project, Stage1-Surface exploration, final exploration report”. Kingston Morrison Limited Co., Report 2505- RPT- GE- 003 for the Renewable Energy Organization of Iran, Tehran, pp. 83.
  2. Talebi, B., Khosrawi, K., and Ussher, G. (2005). “Review of resistivity surveys from the NW Sabalan geothermal field, Iran”. World Geothermal Congress, April 24-29, Antalya, Turkey.
  3. Talebi, B. (2006). “Numerical modeling of the NW Sabalan geothermal field, Iran”. Thirty-First Workshop on Geothermal Reservoir Engineering, January 30-February 1, California, USA.
  4. خوجم لی، ا.، مرادزاده، ع.، دولتی ارده جانی، ف.، رحمانی، م.، پرخیال، س.؛ 1394؛ "ارزیابی تعیین بعُد ساختارهای ژئوالکتریک زیرسطحی و مدلسازی وارون یک و دوبُعدی دادههای مگنتوتلوریک منطقه زمینگرمایی شمال غرب سبلان". مجله ژئوفیزیک ایران، دوره نهم، شماره 3، ص 44-30.
  5. Ghaedrahmati, R., Moradzadeh, A., Fathipour, N., Lee, S. K., and Porkhial, S. (2013). “3-D inversion of MT data from the Sabalan geothermal field, Ardabil, Iran”. Journal of Applied Geophysics, 39: 12-24. DOI: https://dx.doi.org/10.1016/j.jappgeo.2013.03.006.
  6. Munoz, G., Weckmann, U., Pek, J., Kovacikova, S., and Klanica, R. (2018). “Regional two-dimensional magnetotelluric profile in West Bohemia/Vogtland reveals deep conductive channel into the earthquake swarm region”. Tectonophysics, 727: 1-11. DOI: https://doi.org/10.1016/j.tecto.2018.01.012.
  7. Cruces-Zabala, J., Ritter, O., Weckmann, U., Tietze, K., and Schmitz, M. (2020). “Magnetotelluric imaging of the Mérida Andes and surrounding areas in Venezuela”. Geophysical Journal International, 222(3): 1570-1589. DOI: https://doi.org/10.1093/gji/ggaa266.
  8. Oskooi, B., Takalu, M., Montahaei, M., and Rahmani, M. (2016). “A Recent Magnetotelluric Investigation of the Sabalan Geothermal Field in North-Western Iran”. Bulletin of Geophysics and Oceanography, Part A: 261-274. DOI: https://doi.org/10.4430/bgta0174.
  9. Zhu, X., Liu, J., Cui Y., and Gong, C. (2022). “A scalable parallel algorithm for 3-D magnetotelluric finite element modeling in anisotropic media”. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-14. DOI: https://doi.org/10.1109/TGRS.2021.3078735.
  10. Yu, N., Li, R., Kong, W., Gao, L., Wu, X., and Wang, E. (2022). “A hybrid grid-based finite-element approach for three-dimensional magnetotelluric forward modeling in general anisotropic media”. Computers and Geosciences, 159: 1-12. DOI: https://doi.org/10.1016/j.cageo.2022.105035.
  11. Gallardo-Romero, E. U., and Ruiz-Aguilar, D. (2022), “High order edge-based finite elements for 3D magnetotelluric modeling with unstructured meshes”. Computers and Geosciences, 158: 104971. DOI: https://doi.org/10.1016/j.cageo.2021.104971.
  12. Cheng, S., Zhang, Z.-Y., Zhou, F., Li, M., Chen, H., Shi, F.-S., Huang, L.-P., and Li, Y. (2021). “3D Step-by-step inversion strategy for audio magnetotellurics data based on unstructured mesh”. Applied Geophysics, 18(3): 375-385. DOI: https://doi.org/10.1007/s11770-021-0905-3.
  13. Key, K. (2016). “Mare2dem: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data”. Geophysical Journal International, 207(1): 571-588. DOI: https://doi.org/10.1093/gji/ggw290.
  14. Zhou, Z., Xiao, T., Zhou, J., Zhu, X., Yang, B., Gong, C., Liu, J., and Wang, Y. (2024). “Three-dimensional marine magnetotelluric parallel forward modeling in conductive and magnetic anisotropic medium using finite-element method based on secondary field”. Journal of Marine Science and Engineering, 12(10): 1750. DOI: https://doi.org/ 10.3390/jmse12101750.
  15. Yu, N., Chen, Z., Wu, X., Kong, W., Chen, H., Li, T., and Feng, X. (2024). “Unstructured grid finite element modeling of the three-dimensional magnetotelluric responses in a model with arbitrary conductivity and magnetic susceptibility anisotropies”. IEEE Transactions on Geoscience and Remote Sensing, 62: 1-13. DOI: https://doi.org/10.1109/TGRS.2024.3360986.
  16. Qin, C., He, W., Wang, X., and Zhao, N. (2024). “3-D joint inversion of MT and CSEM data based on adaptive finite element forward modeling”. IEEE Transactions on Geoscience and Remote Sensing, 62: 2006715. DOI: https://doi.org/10.1109/TGRS.2024.3468395.
  17. Yu, N., Wu, X., Liu, X., Li, R., and Gao, L. (2023). “Hybrid mesh for magnetotelluric forward modeling based on the finite-element method”. Scientific Reports, 13: 532. DOI: https://doi.org/ 10.1038/s41598-023-27758-2.
  18. Li, J., Guo, R., Liu, J., Wang, Y., and Wang, X. (2023). “An efficient algebraic multi-resolution sampling approach to 3-D magnetotelluric modelling”. Geophysical Journal International, 235(1): 166-177. DOI: https://doi.org/10.1093/gji/ggad207.
  19. Chen, H., Ren, Z., and Tang, J. (2023). “MTAINV3D: A three-dimensional adaptive magnetotelluric inversion tool using unstructured grids”. Journal of Physics: Conference Series, 2651(1): 012060. DOI: https://doi.org/10.1088/1742-6596/2651/1/012060.
  20. Ryan, W. B. F., Carbotte, S. M., Coplan, J.O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R. (2009). “Global multi-resolution topography synthesis”. Geochemistry, Geophysics, Geosystems, 10(3): 1-9. DOI: https://doi.org/10.1029/2008GC002332.
  21. Ghalamghash, J., Mousavi, S. Z., Hassanzadeh, J., and Schmitt, A. K. (2016). “Geology, zircon geochronology, and petrogenesis of Sabalan volcano (northwestern Iran)”. Journal of Volcanology and Geothermal Research, 327: 192-207. DOI: https://doi.org/10.1016/j.jvolgeores.2016.05.001.
  22. Bogie, I., Cartwright, A. J., Khosrawi, K., Talebi, B., and Sahabi, F. (2000). “The Meshkin Sharhr Geothermal Prospect, Iran”. Proceedings, 2000 World Geothermal Congress, Japan.
  23. Seyedrahimi-Niaraq, M., Doulati Ardejani, F., Noorollahi, Y., and Porkhial, S. (2017). “Development of an updated geothermal reservoir conceptual model for NW Sabalan geothermal field, Iran”. Geotherm Energy, 5: 14. DOI: https://doi.org/10.1186/s40517-017-0073-0.
  24. Seyedrahimi-Niaraq, M., Doulati Ardejani, F., Noorollahi, Y., Porkhial, S., Itoi, R., and Jalili Nasrabadi, S. (2019). “A three-dimentional numerical model to simulate Iranian NW Sabalan geothermal system”. Geothermics, 77: 42-61. DOI: https://doi.org/10.1016/j.geothermics.2018.08.009.
  25. درویش زاده، ع.؛ 1367؛ "اصول آتشفشان شناسی". انتشارات دانشگاه تهران.
  26. سحابی، ف.؛ 1378؛ "بررسی آتشفشان سبلان با توجه خاص بر روند تشکیل منابع زمین گرمایی مشکین شهر- استان اردبیل". مجله علوم زمین، پژوهشکده علوم و زمین، سازمان زمین شناسی و اکتشافات معدنی کشور، شماره 32-31، ص 2-1.
  27. Karakhanian, A., Djrbashian, R., Trifonov, V., Philip, H., Arakelian, S., and Avagian, A. (2002). “Holocene-historical volcanism and active faults as natural risk factors for Armenia and adjacent countries”. Journal of Volcanology and Geothermal Research, 113: 319-344. DOI: https://doi.org/10.1016/S0377-0273(01)00264-5.
  28. EDC (Energy Development Corporation), (2010. 2009). “MT survey of NW Sabalan geothermal project, NW Iran”. Report submitted to SUNA, pp. 13.
  29. Berdichevsky, M. N., and Dmitriev, V. I. (2008). “Models and Methods of Magnetotellurics”. Springer Berlin Heidelberg, pp. 564. DOI: https://doi.org/10.1007/978-3-540-77814-1.
  30. Unsworth, M., and Rondenay, S. (2012). “Mapping the Distribution of Fluids in the Crust and Lithospheric Mantle Utilizing Geophysical Methods”. Lecture Notes in Earth System Sciences, Springer, Berlin, Heidelberg, 535-598. DOI: https://doi.org/10.1007/978-3-642-28394-9_13.
  31. Unsworth, M., and Rondenay, S. (2012). “Mapping the Distribution of Fluids in the Crust and Lithospheric Mantle Utilizing Geophysical Methods”. In: Lecture Notes in Earth System Sciences (pp. 535-598). Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-28394-9_13.
  32. Cagniard, L. (1953). “Basic theory of the magnetotelluric method of geophysical prospecting”. Geophysics, 18: 605-635. DOI: https://doi.org/10.1190/1.1437915.
  33. Cantwell, T. (1960). “Detection and analysis of low-frequency magnetotelluric signals”. Ph.D. Thesis, Department of Geology and Geophysics, Massachusetts Institute of Technology, Cambridge, pp. 170.
  34. Simpson, F., and Bahr, K. (2005). “Practical Magnetotellurics”. Cambridge University Press, London, pp. 276. DOI: https://doi.org/10.1017/CBO9780511614095.
  35. Chave, A. D., and Jones, A. G. (2012). “The Magnetotelluric Method: Theory and Practice”. Cambridge University Press, London, pp. 571. DOI: https://doi.org/10.1017/CBO9781139020138.
  36. Jones, A. G., and J¨odicke, H. (1984). “Magnetotelluric transfer function estimation improvement by a coherence based rejection technique: Magnetotelluric transfer function estimation improvement by a coherence-based rejection technique”. Society of Exploration Geophysicists, SEG Technical Program Expanded Abstracts. DOI: https://doi.org/10.1190/1.1894081.
  37. Niblett, E. R., and Sayn-Wittgenstein, C. (1960). “Variation of electrical conductivity with depth by the magnetotelluric method”. Geophysics, 25: 998-1008. DOI: https://doi.org/10.1190/1.1438799.
  38. Bostick, F. X. (1977). “A simple almost exact method of MT analysis”. Workshop on Electrical Methods in Geothermal Exploration, U.S. Geol. Sur. Contract. No. 14080001-8-359. In: Workshop on Electrical Methods in Geothermal Exploration, University of Utah Rpt., U.S.G.S contact 14-08-0001-g-359. Ward S.H., ed., pp. 183.
  39. Jones, A. G. (1983). “On the equivalence of the “Niblett” and “Bostick” transformation in the magnetotelluric method”. Journal of Geophysics, 53: 72-73.
  40. Caldwell, T. G., Bibby, H. M., and Brown, C. (2004). “The magnetotelluric phase tensor”. Geophysical Journal International, 158: 457-469. DOI: https://doi.org/10.1111/j.1365-246X.2004.02281.x.
  41. Bahr, K. (1988). “Interpretation of the magnetotelluric impedance tensor - regional induction and local telluric distortion”. Journal of Geophysics-Zeitschrift Fur Geophysik, 62: 119-127.
  42. Bibby, H. M. (1986). “Analysis of multiple-source bipole-quadripole resistivity surveys using the apparent resistivity tensor”. Geophysics, 51(4): 972-983. DOI: https://doi.org/10.1190/1.1442155.
  43. Heise, W., Bibby, H. M., Caldwell, T. G., Bannister, S. C., Ogawa, Y., Takakura, S., and Uchida, T. (2007). “Melt distribution beneath a young continental rift: The Taupo volcanic zone, New Zealand”. Geophysics Research Letter, 34: L14313. DOI: https://doi.org/10.1029/2007GL029629.
  44. Booker, J. R. (2014). “The Magnetotelluric Phase Tensor: A Critical Review”. Survey Geophysics, 35: 7-40. DOI: https://doi.org/10.1007/s10712-013-9234-2.
  45. Hill, J. H., Caldwell, T. G., Heise, W., Chertkoff, D. G., Bibby, H. M., Burgess, M. K., Cull, J. P., and Cass, R. A. F. (2009). “Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data”. Nature Geoscience, 2: 785-789. DOI: https://doi.org/10.1038/ngeo661.
  46. EDC (Energy Development Corporation), (2007. 2007) “MT survey of NW Sabalan geothermal project, NW Iran”. Report submitted to SUNA, pp. 19.
  47. Nicholson, K. (1993). “Geothermal Fluids”. Springer Berlin Heidelberg, pp. 263. DOI: https://doi.org/10.1007/978-3-642-77844-5.
  48. Johnston, J. M., Pellerin, L., and Hohmann, G. W. (1992). “Evaluation of electromagnetic methods for geothermal reservoir detection”. Geothermal Resources Council - Transactions, 16: 241-245.
  49. Cumming, W. (2009). “Geothermal resource conceptual models using surface exploration data Proceedings”. Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford, CA Stanford University.
  50. Noorollahi, Y., Itoi, R., Fujii, H., and Tanaka, T. (2008). “GIS integration model for geothermal exploration and well siting”. Geothermics, 37(2): 107-131. DOI: https://doi.org/10.1016/j.geothermics.2007.12.001.
  51. معصومی، ر.؛ 1396؛ " ارزیابی میادین زمین گرمایی بر اساس یافته های زمین شناسی و ژئوشیمی سیالات در اطراف آتشفشان سبلان". علوم طبیعی، پایان نامه دکتری، تبریز، 201 صفحه.
  52. کرمی، ع.؛ 1395؛ "مطالعه ساختاری ـ مورفولوژی آتشفشان سبلان در پیوند با منابع زمین گرمایی". پایان نامه کارشناسی ارشد، تحصیلات تکمیلی علوم پایه، زنجان، 33 صفحه.
  53. Galamghash, J., Mousavi, Z., Hassanzadeh, J., and Schmitt, A. K. (2013). “Sabalan Volcano, Northwest Iran: Geochemistry and U—Pb zircon geochronology”. In Conference: GSA Annual Meeting in Denver: 125th Anniversary of GSA, The Geological Society of America, 27-30 October, Denver-USA.
  54. Fanaee Kheirabad, G. A., and Oskooi, B. (2011). “Magnetotelluric interpretation of the Sabalan
    geothermal field in the northwest of Iran”
    . Journal of the Earth and Space Physics, 37(3): 667616. DOR: https://dor.isc.ac/dor/20.1001.1.2538371.1390.37.3.18.3.
  55. Anderson E., Crosby D., and Ussher G. (1999). “Geothermal systems revealed by deep resistivity”. In: Proceedings 21th New Zealand Geothermal Workshop, Auckland, New Zealand, 107-112.
  56. Cumming, W., and Mackie, R. (2010) “Resistivity imaging of geothermal resources using 1D, 2D and 3D MT inversion and TDEM static shift correction illustrated by a glass mountain case history”. In: Proceedings World Geothermal Congress, Bali, Indonesia.
  57. Muñoz, G. (2014). “Exploring for Geothermal Resources with Electromagnetic Methods”. Surveys in Geophysics, 35(1): 101-122. DOI: https://doi.org/10.1007/s10712-013-9236-0.