بررسی مقایسه‌ای مکانیزم و سینتیک لیچینگ اسیدی کنسانتره اسفالریت در حضور نمک‌های مختلف آهن

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر، تهران

2 استادیار، دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر، تهران

3 استاد، دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر، تهران

چکیده

کانسنگ‌های حاوی اسفالریت به عنوان منبع اصلی تولید فلز روی، به دلیل وجود لایه غیرفعال گوگردی دارای انحلال ضعیفی در اسید سولفوریک است. در این تحقیق، بررسی مقایسه‌ای مکانیزم و سینتیک لیچینگ اسیدی کنسانتره اسفالریت در حضور نمک‌های آهن از جمله نیترات، کلرید و سولفات آهن انجام شده است. برای این کار، یک کنسانتره اسفالریت، حاوی 23/41 درصد روی، 15/26 درصد گوگرد و 06/6 درصد آهن مورد بررسی قرار گرفت. پارامترهای نوع نمک اکسیدکننده، غلظت اسید سولفوریک، دما، زمان، نسبت جامد به مایع و نرخ تزریق اکسیژن مورد بررسی قرار گرفتند. نتایج حاکی از آن است که پارامترهای دما، نسبت جامد به مایع و غلظت یون فریک بیشترین تاثیر را بر نرخ انحلال اسفالریت داشته است. در شرایط بهینه،‌ غلظت اسیدسولفوریک 51/0 مولار، آهن فریک 9/0 مولار، نرخ تزریق اکسیژن 2 لیتر بر دقیقه، دمای واکنش 90 درجه سانتی‌گراد، زمان 12 ساعت و نسبت جامد به مایع 50 گرم بر لیتر، بازیابی روی برابر 85/94 درصد به دست آمد. بررسی سینتیکی نشان داد، بر اساس مدل هسته کوچک شونده، نحوه کنترل نرخ لیچینگ اسفالریت طبق مکانیزم نفوذ به دلیل ضریب همبستگی بالاتر نسبت به مکانیزم واکنش شیمیایی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Comparative Study on the Mechanism and Kinetics of Acidic Leaching of Sphalerite Concentrate in the Presence of Different Iron Salts

نویسندگان [English]

  • M. Tirgham 1
  • H. Kamran Haghighi 2
  • M. Irannajad 3
1 M.Sc Student, Dept. of Mining Engineering, Amirkabir University of Technology, Tehran, Iran
2 Assistant Professor, Dept. of Mining Engineering, Amirkabir University of Technology, Tehran, Iran
3 Professor, Dept. of Mining Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

As the main resource of zinc metal production, zinc sulfide mineral has poor sulfuric acid dissolution due to an inactive sulfur layer. This research has done a comparative study on the mechanism and kinetics of acid leaching of sphalerite concentrate in the presence of iron salts such as nitrate, chloride, and iron sulfate. For this purpose, studies were done on a sphalerite concentrate containing 41.23% Zn, 26.15% S, and 6.06% Fe. The investigated parameters include ferric ion concentration, sulfuric acid concentration, temperature, time, solid-to-liquid ratio, and oxygen injection rate, each evaluated at 5 levels. The results indicate that the parameters of temperature, solid-liquid ratio, and ferric ion concentration had the greatest effect on the sphalerite dissolution rate. In the optimal conditions of sulfuric acid concentration 0.51 M, ferric iron 0.9 M, oxygen injection rate 2 L/min, reaction temperature 90°C, time 12 h, and the solid-to-liquid ratio of 50 g/L, recovery of zinc was obtained to be 94.85%. Kinetic investigations showed that, based on the shrinking core model, the sphalerite leaching rate control is based on the diffusion mechanism due to the high correlation coefficient compared to the chemical reaction mechanism.

کلیدواژه‌ها [English]

  • Sulfide concentrate
  • Zinc
  • Atmospheric leaching
  • Ferric ion
  1. Melcher, G., Muller, E., and Weigel, H. (1976). “The KIVCET cyclone smelting process for impure copper concentrates”. JOM, 28(7): 4-8. DOI: 10.1007/bf03354289.
  2. Bernasowski, M., Stachura, R., and Klimczyk, A. (2022). “Fuel Consumption Dependence on a Share of Reduction Processes in Imperial Smelting Furnace”. Energies, 15(23): 9259. DOI: 10.3390/en15239259.
  3. Latif, S. (2017). “Leaching of sphalerite using hydrogen peroxide in sulphuric acid media”. Murdoch University.
  4. Lampinen, M. (2016). “Development of hydrometallurgical reactor leaching for recovery of zinc and gold”. Doctoral Dissertation, Lappeenranta University of Technology.
  5. Henning, A. J. (2018). “Mechanisms and kinetics of atmospheric sphalerite oxidative and non-oxidative leaching”. Stellenbosch: Stellenbosch University.
  6. Nnanwube, I. A., Onukwuli, O. D., and Ezekannagha, C. B. (2024). “Kinetics of sphalerite dissolution for potential zinc recovery via oxidative leaching”. Canadian Metallurgical Quarterly, 63(2): 1-12. DOI: 10.1080/00084433.2024.2306037.
  7. Karimi, S., Rashchi, F., and Ghahreman, A. (2021). “The Evaluation of Sphalerite Surface Formed During Oxidative Leaching in Acidic Ferric Sulfate Media”. Journal of Sustainable Metallurgy, 7(3): 1304-1313. DOI: 10.1007/s40831-021-00418-3.
  8. Lorenzo-Tallafigo, J., Iglesias-Gonzalez, N., Romero, R., Mazuelos, A., and Carranza, F. (2018). “Ferric leaching of the sphalerite contained in a bulk concentrate: Kinetic study”. Minerals Engineering, 125: 50-59. DOI: 10.1016/j.mineng.2018.05.026.
  9. Aydogan, S. (2006). “Dissolution kinetics of sphalerite with hydrogen peroxide in sulphuric acid medium”. Chemical Engineering Journal, 123(3): 65-70. DOI: 10.1016/j.cej.2006.07.001.
  10. Hasani, M., Koleini, S. M., and Khodadadi, A. (2016). “Kinetics of sphalerite leaching by sodium nitrate in sulfuric acid”. Journal of Mining and Environment, 7(1): 1-12.
  11. Mubarok, M. Z., Sukamto, K., Ichlas, Z. T., and Sugiarto, A. T. (2018). “Direct sulfuric acid leaching of zinc sulfide concentrate using ozone as oxidant under atmospheric pressure”. Minerals & Metallurgical Processing, 35(3): 133-140. DOI: 10.19150/mmp.8462.
  12. Xu, Z.-f., Jiang, Q.-z., and Wang, C.-y. (2013). “Atmospheric oxygen-rich direct leaching behavior of zinc sulphide concentrate”. Transactions of Nonferrous Metals Society of China, 23(12): 3780-3787. DOI: 10.1016/s1003-6326(13)62929-5.
  13. Sadeghi, N., Moghaddam, J., and Ojaghi Ilkhchi, M. (2017). “Kinetics of zinc sulfide concentrate direct leaching in pilot plant scale and development of semi-empirical model”. Transactions of Nonferrous Metals Society of China, 27(10): 2272-2281. DOI: 10.1016/s1003-6326(17)60253-x.
  14. El Bar, D., and Barket, D. (2015). “The leaching of sulfide iron (II) with sulfuric acid”. Journal of Mining Science, 51(1): 179-185. DOI: 10.1134/s106273911501024x.
  15. Yang, B., Xie, X., Tong, X., Lan, Z., and Cui, Y. (2018). “Interaction between sphalerite and pyrite and its effect on surface oxidation of sphalerite”. Physicochemical Problems of Mineral Processing, 54(2): 311-320.
  16. Picazo-Rodríguez, N. G., Soria-Aguilar, M. D., Martínez-Luévanos, A., Almaguer-Guzmán, I., Chaidez-Félix, J., and Carrillo-Pedroza, F. R. (2020). “Direct Acid Leaching of Sphalerite: An Approach Comparative and Kinetics Analysis”. Minerals, 10(4): 359. DOI: 10.3390/min10040359.
  17. Crundwell, F. K. (2021). “The impact of light on the rate and mechanism of dissolution and leaching of natural iron-containing sphalerite, (Zn,Fe)S”. Minerals Engineering, 160: 106702. DOI: https://doi.org/10.1016/j.mineng.2020.106702.
  18. Nikkhou, F., Kartal, M., and Xia, F. (2021). “Ferric methanesulfonate as an effective and environmentally sustainable lixiviant for Zn extraction from sphalerite (ZnS)”. Journal of Industrial and Engineering Chemistry, 96: 226-235. DOI: https://doi.org/10.1016/j.jiec.2021.01.017.
  19. Salmi, T., Grénman, H., Bernas, H., Wärnå, J., and Murzin, D. Y. (2010). “Mechanistic modelling of kinetics and mass transfer for a solid–liquid system: Leaching of zinc with ferric iron”. Chemical Engineering Science, 65(15): 4460-4471. DOI: 10.1016/j.ces.2010.04.004.
  20. Dutrizac, J. E. (2006). “The dissolution of sphalerite in ferric sulfate media”. Metallurgical and Materials Transactions B, 37(2): 161-171. DOI: 10.1007/bf02693145.
  21. Markus, H., Fugleberg, S., Valtakari, D., Salmi, T., Murzin, D. Y., and Lahtinen, M. (2004). “Kinetic modelling of a solid–liquid reaction: reduction of ferric iron to ferrous iron with zinc sulphide”. Chemical Engineering Science, 59(4): 919-930. DOI: 10.1016/j.ces.2003.10.022.
  22. Levchuk, I. (2010). “Role of oxidation-reduction cycle of iron in direct leaching of zinc concentrate”. Master’s Thesis, Lappeenranta University of Technology.
  23. Guler, E. (2016). “Pressure acid leaching of sphalerite concentrate. Modeling and optimization by response surface methodology”. Physicochemical Problems of Mineral Processing, 52(1): 479-496.
  24. Dutrizac, J. E., and Jambor, J. L. (2000). “Jarosites and their application in hydrometallurgy”. Reviews in Mineralogy and Geochemistry, 40(1): 405-452.
  25. Nikkhou, F., Xia, F., and Deditius, A. P. (2019). “Variable surface passivation during direct leaching of sphalerite by ferric sulfate, ferric chloride, and ferric nitrate in a citrate medium”. Hydrometallurgy, 188: 201-215. DOI: 10.1016/j.hydromet.2019.06.017.
  26. Muravyov, M., and Panyushkina, A. (2023). Comparison of sphalerite, djurleite, and chalcopyrite leaching by chemically and biologically generated ferric sulfate solutions”. Hydrometallurgy, 219: 106067. DOI: 10.1016/j.hydromet.2023.106067.
  27. Dehghan, R., Noaparast, M., Kolahdoozan, M., and Mousavi, S. (2008). “Statistical evaluation and optimization of factors affecting the leaching performance of a sphalerite concentrate”. International Journal of Mineral Processing, 89(1-4): 9-16.
  28. Nikkhou, F. (2021). “Formation mechanisms of surface passivating phases and their impact on the leaching kinetics of sphalerite (ZnS) and galena (PbS)”. Murdoch University.
  29. Santos, S. M. C., Machado, R. M., Correia, M. J. N., Reis, M. T. A., Ismael, M. R. C., and Carvalho, J. M. R. (2010). “Ferric sulphate/chloride leaching of zinc and minor elements from a sphalerite concentrate”. Minerals Engineering, 23(8): 606-615. DOI: 10.1016/j.mineng.2010.02.005.
  30. Wang, D.-w., Liang, Y.-j., Lin, Z., Peng, C., and Peng, B. (2022). “Comprehensive recovery of zinc, iron and copper from copper slag by co-roasting with SO2–O2”. Journal of Materials Research and Technology, 19: 2546-2555. DOI: 10.1016/j.jmrt.2022.05.177.
  31. Souza, A. D., Pina, P. S., Leão, V. A., Silva, C. A., and Siqueira, P. F. (2007). “The leaching kinetics of a zinc sulphide concentrate in acid ferric sulphate”. Hydrometallurgy, 89(1-2): 72-81. DOI: 10.1016/j.hydromet.2007.05.008.
  32. Kaskiala, T. (2005). “Determination of mass transfer between gas and liquid in atmospheric leaching of sulphidic zinc concentrates”. Minerals Engineering, 18(12): 1200-1207. DOI: https://doi.org/10.1016/j.mineng.2005.07.006.
  33. Dreisinger, D. B., and Peters, E. (1989). “The oxidation of ferrous sulphate by molecular oxygen under zinc pressure-leach conditions”. Hydrometallurgy, 22(1): 101-119. DOI: https://doi.org/10.1016/0304-386X(89)90044-3.