تشخیص اتوماتیک کانسنگ از باطله با استفاده از تصاویر مغزه‌ها و شبکه عمیق U-Net

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی معدن، دانشگاه تهران، تهران

2 دانشجوی دکتری، دانشکده مهندسی معدن، دانشگاه تهران، تهران

3 دانشیار، دانشکده مهندسی معدن، دانشگاه تهران، تهران

4 استادیار، دانشکده مهندسی معدن، دانشگاه تهران، تهران

چکیده

یکی از مراحل اولیه و مهم در اکتشاف مواد معدنی، تشخیص الگوها و ویژگی‌های زمین‌شناسی است. این ویژگی‌ها شامل، کانی‌شناسی، سنگ‌شناسی، آلتراسیون، بافت سنگ و نظایر آن است. این مرحله همواره با چالش‌های زیادی از جمله زمان‌بر و هزینه‌بر بودن، نیاز به تخصص بالا و همچنین نیروی انسانی برای تشخیص این الگوها و ویژگی‌ها همراه بوده است. یادگیری ماشین و یادگیری عمیق از جمله ابزاری هستند که در خدمت علوم زمین قرار گرفته‌اند. در این پژوهش با استفاده از معماری U-net به جدا کردن باطله و کانسنگ و شناسایی الگوی عیاری با استفاده از تصاویر گرفته شده از جعبه مغزه اقدام شد. ابتدا تصاویر استاندارد از جعبه مغزه‌ها تهیه و پیش‌پردازش‌های اولیه بر روی داده‌ها انجام شد، سپس با استفاده از بخش‌بندی باینری کانی‌های آهن جدا و برای بهینه‌سازی شبکه از روش‌های سعی و خطا استفاده گردید. در نهایت دقت مدل برای شناسایی کانسنگ آهن 91 درصد بود. در ادامه برای بررسی‌های بیشتر از روش IOU استفاده شد. این روش یک معیار مناسب برای ارزیابی نهایی مدل بخش‌بندی تصاویر است که برای شناسایی کانسنگ آهن دقت مدل 75 درصد به ‌دست‌ آمده است. در نهایت برای اعتبارسنجی نهایی مدل‌های به ‌دست‌ آمده، خروجی‌های به ‌دست‌ آمده از شبکه با مقادیر عیاری گزارش شده از آنالیز XRF یک مغزه بررسی و خطای شبکه 9 درصد ارزیابی شد که دقت خوب مدل به‌ دست‌ آمده با توجه ‌به داده‌های واقعی را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Automatic Separation of Ore and Waste Using Images of Drill Cores and the Deep Neural Network U-Net

نویسندگان [English]

  • M. Farahmand 1
  • M. Fahiminia 2
  • O. Asghari 3
  • M.S. Mirmohammadi 4
1 M.Sc, Dept. of Mining, Faculty of Engineering, University of Tehran, Tehran, Iran
2 Ph.D, Dept. of Mining, Faculty of Engineering, University of Tehran, Tehran, Iran
3 Associate Professor, Dept. of Mining, Faculty of Engineering, University of Tehran, Tehran, Iran
4 Assistant Professor, Dept. of Mining, Faculty of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

One of the most crucial steps in ore exploration is the recognition of geological patterns and features. These features contain mineralogy, lithology, alteration, rock texture, etc. This stage has always been associated with many challenges. Among the challenges of this stage, we can mention the time-consuming and costly nature of this stage and the need for high expertise and human resources to recognize these patterns and features. In recent years, deep learning and machine learning have been adopted in earth sciences. In this research, by using the architecture of U-net, ore and waste were separated, and the grade pattern was identified using the core box images. For this purpose, iron minerals were segmented using binary image segmentation, trial-and-error methods were used to optimize the network, and finally, the model's accuracy for identifying ore was 91%. The IoU metric was utilized for further evaluation; this metric is a suitable criterion for the final evaluation of the image segmentation model, which has reached 75% in recognition of iron ores. For the final evaluation of the obtained model, the grade outputs of the model and the XRF analysis results of one core were compared. The network error was evaluated at 9%, which shows the good accuracy of the obtained model according to the real data.

کلیدواژه‌ها [English]

  • Core box
  • Image segmentation
  • RGB image
  • Deep learning
  • U-net network
  1. Jin, C., Wang, K., Han, T., Lu, Y., Liu, A., and Liu, D. (2022). “Segmentation of ore and waste rocks in borehole images using the multi-module densely connected U-net”. Computers & Geosciences, 159: 105018. DOI: 10.1016/j.cageo.2021.105018.
  2. Liu, J., Chen, W., Muller, M., Chalup, S., and Wheeler, C. (2019). “An automatic HyLoggerTM mineral mapping method using a machine-learning-based computer vision technique”. Australian Journal of Earth Sciences, 66(7): 1063-1073. DOI: 10.1080/08120099.2019.1600167.
  3. Desta, F., and Buxton, M. (2017). “The use of RGB Imaging and FTIR Sensors for Mineral mapping in the Reiche Zeche underground test mine, Freiberg”. Real Time Mining, Conference on Innovation on Raw Material Extraction, Amsterdam, 103-127.
  4. Ramil, A., López, A. J., Pozo-Antonio, J. S., and Rivas, T. (2018). “A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks”. Measurement, 117: 90-95. DOI: 10.1016/j.measurement.2017.12.006.
  5. Cheng, H. D., Jiang, X. H., Sun, Y., and Wang, J. (2001). “Color image segmentation: Advances and prospects”. Pattern Recognition, 34(12): 2259-2281. DOI: 10.1016/S0031-3203(00)00149-7.
  6. Varatharasan, V., Shin, H. S., Tsourdos, A., and Colosimo, N. (2019). “Improving Learning Effectiveness for Object Detection and Classification in Cluttered Backgrounds”. 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), 25-27 Nov., 78-85. DOI: 10.1109/REDUAS47371.2019.8999695.
  7. Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-Net: Convolutional Networks for Biomedical Image Segmentation”. In: Navab, N., Hornegger, J., Wells, W., and Frangi, A. (Eds.), Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. MICCAI 2015, Lecture Notes in Computer Science, Vol. 9351, Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-24574-4_28.
  8. Chen, Z., Liu, X., Yang, J., Little, E., and Zhou, Y. (2020). “Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary Basin”. Computers & Geosciences, 138: 104450. DOI: 10.1016/j.cageo.2020.104450.
  9. Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S. R., and Armstrong, R. T. (2021). “Automated lithology classification from drill core images using convolutional neural networks”. Journal of Petroleum Science and Engineering, 197: 107933. DOI: 10.1016/j.petrol.2020.107933.
  10. Shorten, C., and Khoshgoftaar, T. M. (2019). “A survey on Image Data Augmentation for Deep Learning”. Journal of Big Data, 6: 60. DOI: 10.1186/s40537-019-0197-0.
  11. Lecun, Y., Bengio, Y., and Hinton, G. (2015). “Deep learning”. Nature, 521(7553): 436-444., DOI: 10.1038/nature14539.
  12. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). “Learning representations by back-propagating errors”. Nature, 323(6088): 533-536. DOI: 10.1038/323533a0.
  13. Lee, Y., Sim, W., Park, J., and Lee, J. (2022). “Evaluation of Hyperparameter Combinations of the U-Net Model for Land Cover Classification”. Forests, 13(11): 1813. DOI: 10.3390/f13111813.
  14. van Laarhoven, T. (2017). “L2 Regularization versus Batch and Weight Normalization”. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, arXiv, 1-9. DOI: https://doi.org/10.48550/arXiv.1706.05350.
  15. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., and Terzopoulos, D. (2022). “Image Segmentation Using Deep Learning: A Survey”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7): 3523-3542. DOI: 10.1109/TPAMI.2021.3059968.
  16. Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2010). “The pascal visual object classes (VOC) challenge”. International Journal of Computer Vision, 88(2): 303-338. DOI: 10.1007/s11263-009-0275-4.
  17. Kaiming, H., Gkioxari, G., Dollar, P., and Girshick, R. (2017). “Mask R-CNN”. IEEE Access, 2961-2969.