تهیه نقشه پتانسیل سرب- روی در برگه اردستان با روش ترکیبی AHP-TOPSIS

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه اکتشاف معدن، دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر، تهران

2 دانشیار، گروه اکتشاف معدن، دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر، تهران

چکیده

ورقه یکصدهزار اردستان در بخش‌هایی از زون‌های ایران مرکزی و ارومیه دختر قرار دارد و با توجه به ویژگی‌های خاص زمین-شناسی یکی از مناطق امیدبخش برای کانی‌زایی سرب- روی در کشور است. هدف از این پژوهش مدل‌سازی پتانسیل معدنی با استفاده از روش ترکیبی AHP-TOPSIS، برای افزایش میزان صحت نتایج با کمترین میزان مساحت جستجو و در نتیجه کاهش هزینه و ریسک عملیات اکتشافی است. بدین منظور در گام نخست لایه‌های اکتشافی شاهد که شامل نقشه ژئوشیمیایی حاصل از تحلیل مولفه‌های اصلی، نقشه‌ فاصله از دگرسانی‌های فیلیک، آرژیلیک و اکسید آهن، نقشه چگالی گسل و در نهایت نقشه فاصله از واحدهای کربناته است، با استفاده از تابع لجستیکی در دامنه صفر تا 1 قرار گرفت. با توجه به اهمیت شناسایی و تفکیک جوامع ژئوشیمیایی آنومال از مقادیر زمینه در اکتشاف کانسارهای فلزی از روش فرکتال عیار- مساحت به دلیل در نظر گرفتن همزمان مقادیر فراوانی و تغییرات فضایی داده‌های ژئوشیمیایی استفاده و با استفاده از این روش، جوامع آنومالی ژئوشیمیایی مرتبط با کانی‌زایی سرب و روی از زمینه تفکیک شد. در مرحله بعد تمامی معیارها و زیرمعیارها با استفاده از روش تحلیل سلسله مراتبی (AHP) وزن‌دهی و با تکنیک اولویت‌بندی با شباهت به راه ‌حل ایده‌آل (TOPSIS) تلفیق شد. نتایج حاصل نشان‌دهنده ارتباط فضایی مثبت کانی‌زایی سرب- روی  تیپ MVT در ورقه اردستان، با لیتولوژی‌های مستعد کانی‌زایی است. در نهایت برای صحت‌سنجی روش به کار گرفته شده در شناسایی نواحی امیدبخش، از منحنی (Prediction-Area (P-A استفاده شد. طبق این نمودار، نقطه تلاقی منحنی‌های نرخ پیش‌بینی و مساحت اشغال‌شده مربوطه، مقدار 68 را نشان داد. نتایج حاصل از این منحنی، توانایی قابل قبول این روش را در شناسایی نواحی امیدبخش ثابت کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparation of a Pb-Zn Potential Map in the Ardestan Area Using the AHP-TOPSIS Hybrid Method

نویسندگان [English]

  • M. Mahboobi 1
  • H. Katibeh 2
  • A. Maghsoudi 2
1 Ph.D Student, Dept. of Mining Engineering, Amirkabir University of Technology, Tehran, Iran
2 Associate Professor, Dept. of Mining Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

Ardestan area is located in parts of Central Iran and Urumieh-Dokhtar zones, and due to its special geological features, is one of the most promising areas for Pb-Zn mineralization in Iran. The purpose of this research is to model the mineral potential using the hybrid AHP-TOPSIS method, to increase the accuracy of the results and thus to reduce the cost and the risk of exploration operations. For this, in the first step, the evidential layers, which include the geochemical anomaly map, the phyllic, argillic, and iron oxide alterations, the fault density map, and finally carbonate rock units, were transformed in the range of 0 to 1 using the Logistic function. In the next step, all the evidential maps and their corresponding classes weighted using the Analytical Hierarchy (AHP) method and incorporated with the technique of prioritization similar to the ideal solution (TOPSIS). The results show the positive spatial correlation of Pb-Zn elements with lithologies prone to mineralization. Finally, the Prediction-Area (P-A) curve was used to validate the applied method. According to this curve, the intersection point of the prediction rate curves and the corresponding occupied area showed the value of 68. The results of this curve proved the acceptable ability of this method in identifying promising areas.

کلیدواژه‌ها [English]

  • Ardestan
  • AHP-TOPSIS
  • Concentration- Area
  • Mineral Prospectivity Mapping
  • P-A plot
  1. Bahrami, Y., and Hassani, H. (2024). “Optimization of machine learning algorithms for remote alteration mapping”. Advances in Space Research (In Press). DOI: https://doi.org/10.1016/j.asr.2024.05.045.
  2. بهرامی، ی.، حسنی، ی.، مقصودی، ع.؛ 1399؛ "به کارگیری روش SWARA-MOORA به منظور تهیه نقشه پتانسیل معدنی مس در ورقه 1:100000 ابهر، ایران". نشریه مهندسی منابع معدنی، دوره پنجم، شماره 2، ص 1-20.
  3. Carranza, E. J. M. (2008). “Geochemical anomaly and mineral prospectivity mapping in GIS”. Elsevier, 11: pp. 365.
  4. Li, Q., Chen, G., and Luo, L. (2023). “Mineral prospectivity mapping using attention-based convolutional neural network”. Ore Geology Reviews, 156: 105381.
  5. Nouri, R., Jafari, M. R., Arian, M., Feizi, F., and Afzal, P. (2013). “Prospection for copper mineralization with contribution of remote sensing, geochemical and mineralographicaldata in Abhar 1:100,000 sheet, Nw Iran”. Archives of Mining Sciences, 58(4): 1071-1084.
  6. Bahrami, Y., Hassani, H., and Maghsoudi, A. (2019). “BWM-ARAS: A new hybrid MCDM method for Cu prospectivity mapping in the Abhar area, NW Iran”. Spatial Statistics, 33: 100382.
  7. Shahsavar, S., Jafari Rad, A., Afzal, P., Nezafati, N., and Akhavan Aghdam, M. (2019). “Prospecting for polymetallic mineralization using step-wise weight assessment ratio analysis (SWARA) and fractal modeling in Aghkand Area, NW Iran”. Arabian Journal of Geosciences, 12(7): 248-257.
  8. Bahrami, Y., Hassani, H., and Maghsoudi, A. (2020). “Landslide susceptibility mapping using AHP and fuzzy methods in the Gilan province, Iran”. GeoJournal, 86: 1797-1816.
  9. Ghaeminejad, H., Abedi, M., Afzal, P., Zaynali, F., and Yousefi, M. (2020). “A fractal-based outranking approach for integrating geochemical, geological, and geophysical data”. Bollettino di Geofisica Teorica ed Applicata, 61(4): 555-588.
  10. بهرامی، ی.، حسنی، ی.، مقصودی، ع.؛ 1400؛ "استفاده از روش ترکیبی AHP-TOPSIS به منظور مدلسازی پتانسیل معدنی مس در ورقه یکصدهزار ابهر، شمالغرب ایران". پژوهش‌های دانش زمین، سال دوازدهم، شماره 45 ، ص 57-41.
  11. Abedi, M., Torabi, S. A. and Norouzi, G. H. (2013). “Application of fuzzy-AHP method to integrate geophysical data in a prospect scale, a case study: seridune copper deposit”. Bollettino di Geofisica Teorica ed Applicata, 54(2): 145-164.
  12. Chen, C., Dai, H., Liu, Y., and He, B. (2011). “Mineral prospectivity mapping integrating multisource geology spatial data sets and logistic regression modelling”. Proceedings 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services, Fuzhou, China, 214-217. DOI: 10.1109/ICSDM.2011.5969034.
  13. Porwal, A., González-Álvarez, I., Markwitz, V., McCuaig, T. C., Mamuse, A. (2010a). “Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia”. Ore Geology Reviews, 38: 184-196.
  14. Porwal, A., Carranza, E. J. M., and Hale, M. (2006b). “Bayesian network classifiers for mineral potential mapping”. Computers & Geosciences, 32(1): 1-16.
  15. Abedi, M., and Norouzi, G. H. (2015). “A general framework of TOPSIS method for integration of airbornegeophysics, satellite imagery, geochemical and geological data”. International Journal of Applied Earth Observation and Geoinformation, 46: 31-44.
  16. Oh, H. J., and Lee, S. (2010). “Application of artificial neural network for gold–silver deposits potential mapping: a case study of Korea”. Natural Resources Research, 19(2): 103-124.
  17. Harris, D. P., Zurcher, L., Stanley, M., Marlow, J., and Pan, G. (2003). “A comparative analysis of favourability mappings by weights of evidence probabilistic neuralnetworks, discriminant analysis, and logisticregression”. Natural Resources Research, 12: 241-255.
  18. Abedi, M., Torabi, S. A., Norouzi, G. H., Hamzeh, M., and Elyasi, G. R. (2012a). “PROMETHEE II: a knowledge-driven method for copper exploration”. Computers & Geosciences, 46: 255-263.
  19. Zuo, R., and Carranza, E. J. M. (2011). “Support vector machine: a tool for mapping mineral potential”. Comput. Geosci, 37(12): 1967-1975.
  20. Carranza, E. J. M., and Laborte, A. G. (2015a). “Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of random forestsalgorithm”. Ore Geology Reviews, 71: 777-787.
  21. Afzal, P., Mirzaei, M., Yousefi, M., Adib, A., Khalajmasoumi, M., Zia Zarifi, A., Foster, P., and Yasrebi, A. B. (2016). “Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis”. Journal of African Earth Sciences, 119: 139-149.
  22. Mirzaei, M., Afzal, P., Adib, A., Khalajmasoumi, M., and Zarifi, A. Z. (2014). “Prospection of iron and manganese using index overlay and fuzzy logic methods in Balvard1:100,000 sheet, Southeastern Iran”. Iranian Journal of Earth Sciences, 6: 1-11.
  23. Pazand, K., Hezarkhani, A., and Ataei, M. (2012). “Using TOPSIS approaches for predictive porphyry Cu potential mapping: A case study in Ahar-Arasbaran area (NW, Iran)”. Computers and Geosciences, 49: 62-71.
  24. Pazand, K., and Hezarkhani, A. (2015). “Porphyry Cu potential area selection using the combine AHP-TOPSIS methods: a case study in Siahrud area (NW, Iran)”. Earth Science Informatics, 8(1): 207-220.
  25. Asadi, H. H., Sansoleimani, A., Fatehi, M., and Carranza, E. J. M. (2016). “An AHP–TOPSIS Predictive Model for District-Scale Mapping of Porphyry Cu–Au Potential: A Case Study from Salafchegan Area (Central Iran)”. Natural Resources Research, 25: 417-429.
  26. Shafieyan, F., and Abdideh, M. (2018). “Application of concentration-area fractal method in static modelling of hydrocarbon reservoirs”. Journal of Petroleum Exploration and Production Technology, 9: 1197-1202.
  27. Yousefi, M., and Carranza, E. J. M. (2015). “Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping”. Computers and Geosciences, 83: 72-79.
  28. Ostadhosseini, A., Barati, M., Afzal, P., and Lee, I. (2021). “Geochemical and microthermometric characteristics of the Davaran Manto-type copper deposit, Central Iran”. Neues Jahrbuch Mineralogie, 197: 145-164.
  29. Aliyari, F., Afzal, P., Harati, H., and Zengqian, H. (2020). “Geology, mineralogy, ore fluid characteristics, and 40Ar/39Ar geochronology of the Kahang Cu-(Mo) porphyry deposit, Urumieh-Dokhtar Magmatic Arc, Central Iran”. Ore Geology Reviews, 116: 103238.
  30. Sabahi, F., Lotfi, M., Afzal, P., and Nezafati, N. (2019). “Geological, fluid inclusion and isotopic characteristics of the Gardaneshir Zn–Pb deposit, Central Iran”. Geopersia, 9(2): 221-232.
  31. رادفر، ج.، امینی‌چهرق، م.؛ 1378؛ "نقشه و شرح نقشه زمینشناسی ورقه اردستان با مقیاس 1:100000". سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  32. Saaty, T. L. (1980). “The Analytical Hierarchy Process: Planning, Priority Setting, Resource Allocation”. McGraw-Hill, New York.
  33. Saaty, T. L. (1990). “Decision making for leaders: the analytic hierarchy process for decisions in a complex world”. RWS Publications, University of Pittsburgh, pp. 292.
  34. Moreira, F. R., Almeida-Filho, R., and Câmara, G. (2003). “Spatial Analysis techniques applied to mineral prospecting: an evaluation in the Poços de Caldas Plateau”. Brazilian Journal of Geology, 33(2): 183-190.
  35. Hosseinali, F., and Alesheikh, A. A. (2008). “Weighting spatial information in GIS for copper mining exploration”. American Journal of Applied Sciences, 5(9): 1187-1198.
  36. Saaty, T. L. (2005). “The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making”. In: Multiple Criteria Decision Analysis: State of the Art Surveys, Springer New York, 345-405.
  37. Hwang, C. L., and Yoon, K. (1981). “Methods for multiple attribute decision making”. In: Multiple Attribute Decision Making, Lecture Notes in Economics and Mathematical Systems, Vol. 186, Springer, Berlin, Heidelberg, 58-191.
  38. Samimi Namin, F., Shahriar, K., Ataee-Pour, M., and Dehghani, H. (2008). “A new model for mining method selection of mineral deposit based on fuzzy decision making”. Journal of the Southern African Institute of Mining and Metallurgy, 108(7): 385-395.
  39. سازمان اکتشافات معدنی کشور؛ 1383؛ "گزارش اکتشاف ژئوشیمیایی سیستماتیک در ورقه یکصدهزار اردستان". سازمان اکتشافات معدنی کشور.
  40. Forster, H. (1978). “Mesozoic - Cenozonic metallogensis in Iran”. Geological Society London, 135: 443-445.
  41. Bahrami, Y., Hassani, H., and Maghsoudi, A. (2018). “Investigating the capabilities of multispectral remote sensors data to map alteration zones in the Abhar area, NW Iran”. Geosystem Engineering, 24(1): 18-30.
  42. Bahrami, Y., Hassani, H., and Maghsoudi, A. (2022). “Spatial modeling for mineral prospectivity using BWM and COPRAS as a new HMCDM method”. Arabian Journal of Geosciences, 15(5): 394.
  43. Zuo, R., Zhang, Z., Zhang, D., Carranza, J., and Wang, H. (2016). “Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China”. Ore Geology Reviews, 71: 502-515.
  44. Yilmaz, H., Behnam Sadeghi, B., and Cohen, D. (2022). “The efficiency of fractal techniques in geochemical anomaly delineation within BLEG and <180 μm stream sediments in Western Turkey”. Journal of Geochemical Exploration, 236: 106957.
  45. Farhadi, S., Afzal, P., Boveiri, Konari, M., Daneshvar Saein, L., and Sadeghi, B. (2022). “Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran”. Minerals, 12(6): 689.
  46. Afzal, P., Yousefi, M., Mirzaei, M., Ghadiri-Sufi, E., Ghasemzadeh, S., and Daneshvar Saein, L., (2019). “Delineation of podiform-type chromite mineralization using Geochemical Mineralization Prospectivity Index (GMPI) and staged factor analysis in Balvard area (southern Iran)”. Journal of Mining and Environment, 10: 705-715.
  47. Afzal, P., Farhadi, S., Boveiri Konari, M., Shamseddin Meigoony, M., and Daneshvar Saein, L. (2022). “Geochemical anomaly detection in the Irankuh District using Hybrid Machine learning technique and fractal modelling”. Geopersia, 12(1): 191-199.
  48. Rodriguez-Galiano, V. F., Chica-Olmo, M., and Chica-Rivas, M. (2014). “Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain”. International Journal of Geographical Information Science, 28: 1336-1354.
  49. Porwal, A., Carranza, E. J. M., and Hale, M. (2003). “Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India”. Natural Resources Research, 12: 155-171.
  50. Abedi, M., and Norouzi, G. H. (2012). “Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration”. Journal of Applied Geophysics, 83: 35-45.
  51. Abedi, M., Norouzi, G. H., and Bahroudi, A. (2012a). “Support vector machine for multi-classification of mineral prospectivity areas”. Computers & Geosciences, 46: 272-283.
  52. De Araújo, C. C., and Macedo, A. B. (2002). “Multicriteria geologic data analysis for mineral favorability mapping: application to a metal sulphide mineralized area, Ribeira Valley Metallogenic Province, Brazil”. Natural Resources Research, 11(1): 29-43.
  53. Sadeghi, B., Afzal, P., Moarefvand, P., and Khodashenas, N. (2012). “Application of Concentration-Area fractal method for determination of Fe geochemical anomalies and the background in Zaghia area, Central Iran”. 34th International Geological Congress Unearthing our Past and Future.
  54. Carranza, E. J. M., and Hale, M. (2002b). “Where porphyry copper deposits are spatiallylocalized? A case study in Benguet province, Philippines”. Natural Resources Research, 11: 45-59.