بهینه‌سازی محدوده نهایی استخراج در معادن روباز با الگوریتم مرغابی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی معدن، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران

2 دانشیار، گروه مهندسی معدن، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران

چکیده

برای طراحی یک معدن بعد از اینکه انجام عملیات زمین‌شناسی، تهیه مدل سه بعدی و مدل بلوکی معدن به اتمام رسید، تعیین محدوده نهایی انجام می‌شود. تعیین محدوده نهایی با استفاده از روش‌های دقیق و روش‌های هوش مصنوعی قابل محاسبه است. مساله تعیین محدوده نهایی از نظر سختی جزو مسایل NPhard است. روش‌های دقیق معمولا به نتیجه‌ای بهتر و بهینه خواهند رسید، اما برای مسایل بزرگ با تعداد بلوک‌های زیاد ممکن است با زمان حل بسیار بالایی قادر به پاسخ‌گویی به مساله باشد. در این شرایط بهتر است از الگوریتم‌های هوش جمعی یا تکاملی برای تعیین محدوده نهایی استفاده کرد. بهینه‌سازی مساله تعیین محدوده نهایی شبیه به مسایل بهینه‌سازی دیگر است که با استفاده از یک منطق الگوریتمی در نرم‌افزار متلب قابل حل است. در اینجا از الگوریتم کشتل در متلب برای بهینه‌سازی محدوده نهایی استفاده شده است. ابتدا الگوریتم کشتل برای حل مساله دو بعدی و سه بعدی پیاده‌سازی شده و در نهایت معدن مس سونگون به عنوان مطالعه موردی انتخاب و نتایج حل مساله تعیین محدوده نهایی با الگوریتم کشتل و نرم‌افزار NPVScheduler مقایسه شده است. نتایج نشان می‌دهد که استفاده از الگوریتم کشتل در مساله تعیین محدوده نهایی معدن مس سونگون اختلاف 47/0 درصدی با نرم‌افزار NPVScheduler دارد. مقایسه الگوریتم کشتل با نتایج لرچ گروسمن در تعیین محدوده نهایی دو بعدی و مقایسه نتایج حاصله از الگوریتم کشتل با نرم‌افزار NPVScheduler در مسایل سه بعدی نشان‌دهنده کارآیی مناسب آن در حل این مسایل است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Ultimate Pit Limit Optimization Using Keshtel Algorithm

نویسندگان [English]

  • S. Rostamian 1
  • M. Ataee-pour 2
1 M.Sc, Dept. of Mining Engineering, AmirKabir University of Technology, Tehran, Iran
2 Associate Professor, Dept. of Mining Engineering, AmirKabir University of Technology, Tehran, Iran
چکیده [English]

To design an open pit mine, geological operations must be conducted, followed by the preparation of a three-dimensional model and mineral block model. The ultimate pit limit can be determined through accurate methods and artificial intelligence techniques. The problem of determining the ultimate pit limit is considered to be NP-hard, making it challenging to solve. While exact methods provide better and optimal results, they may require significant time to answer the problem due to the large number of blocks involved. In such cases, it is more suitable to use collective algorithms or a planned approach to determine the final range. Optimizing the determination of the ultimate pit limit is similar to other optimization problems that can be addressed using logical algorithms in MATLAB software. In this study, Keshtel algorithm, implemented in MATLAB, is utilized to optimize the final range. Initially, Keshtel algorithm is employed to solve the problem. Subsequently, the Songun copper mine is chosen as a case study for the two-dimensional and three-dimensional implementation, and the results of determining the ultimate pit limit are compared with both Keshtel algorithm and NPV Scheduler software. The findings reveal that Keshtel algorithm, used to determine the final limits of the Songun copper mine, differs by only 0.47% compared to the NPV Scheduler software. Moreover, the comparison of Keshtel algorithm with the results of Lerch Grossman in determining the two-dimensional final range, as well as the comparison with NPV Scheduler software in three-dimensional problems, demonstrates its efficiency in solving these issues effectively.

کلیدواژه‌ها [English]

  • Optimization
  • Keshtel Algorithm
  • 3D ultimate pit limit
  1. Espinoza, D., Goycoolea, M., Moreno, E., and Newman, A. (2013). “MineLib: a library of open pit mining problems”. Annals of Operations Research, 206(1): 93-114.
  2. اصانلو، م.؛ 1393؛ "روش های استخراج معدن سطحی(جلد اول)". انتشارات دانشگاه صنعتی امیر‌کبیر، تهران، ویرایش اول.
  3. Pana, M. T. (1965). “The simulation Approach to Open Pit Design”. 5th APCOM Symposium, Johannesburg, 139-144.
  4. Dowd, P. A., and Onur, A. H. (1993). “Open-pit optimization—part 1: optimal open-pit design”. Transactions of the Institutions of Mining and Metallurgy (Section A: Mining Technology), 102: 95-104.
  5. Lerchs, H., and Grossman, F. (1965). “Optimum Design of Open-Pit Mines”. Transaction CIM, 58: 47-54.
  6. Onur, A. H., and Dowd, P. (1993). “Open-pit optimization- Part 2: Production scheduling and inclusion of roadways”. Transactions of the Institutions of Mining and Metallurgy (Section A: Mining Technology), 102: 105-113.
  7. Picard, J. (1976). “Maximal closure of a graph and applications to combinatorial problems”. Management Science, 22: 1268-1272.
  8. Fraser, A. S. (1957a). “Simulation of genetic systems by automatic digital computers I. Introduction”. Australian Journal of Biological Sciences, 10(4): 484-491.
  9. Sattarvand, Javad. (2009). “Long-term open-pit planning by ant colony optimization”. Doctoral Dissertation, University Heidelberg, pp. 125.
  10. Karaboga, D. (2005). “An idea based on honey bee swarm for numerical optimization”. Technical Report-Tr06, October, Erciyes University, Türkiye.
  11. Raphael, B., and Smith, I. F. C. (2003a). “A direct stochastic algorithm for global search”. Journal of Applied Mathematics and Computation, 146(2-3): 729-758.
  12. Kim, Y. C. (1978). “Ultimate pit limit design methodologies using computer models-The state of the art”. Mining Engineering, 30(10): 1454-1459.
  13. اصانلو، م.؛ 1389؛ "عیار حد و نقش آن در طراحی معدن". انتشارات دانشگاه صنعتی امیرکبیر.
  14. Atashpaz-Gargari, E., and Lucas, C. (2007). “Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition”. IEEE Congress on Evolutionary Computation, 4661-4667.
  15. Hajiaghaei-Keshteli, M., and Aminnayeri, M. (2013). “Keshtel Algorithm (KA); a new optimization algorithm inspired by Keshtels’ feeding”. In: Proceeding in IEEE Conference on Industrial Engineering and Management Systems, Novel Metaheuristic, 2249-2253.
  16. Gupta, A., Singh, D., and Kaur, M. (2019). “An efficient image encryption using non dominated sorting genetic algorithm III based 4 D chaotic maps”. Journal of Ambient Intelligence and Humanized Computing, 11: 1309-1324. DOI: https://doi.org/10.1007/s12652-019-01493-x.
  17. Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization”. Proceedings of the IEEE International Conference on Neural Networks, Piscataway, New York, USA, 4: 1942-1948.
  18. حاج آقائی کشتلی، م.؛ 1394؛ "زمان بندی یکپارچه تولید و حمل ریلی در زنجیره تامین". رساله دکتری، دانشگاه صنعتی امیرکبیر.
  19. Hustrulid, W., Kuchta, M., and Martin, R. (2013). “Open pit mine planning and design, two volume set & CD-ROM pack”. CRC Press.
  20. Dadi, V., and Sattarvand, J. (2016). “Effects of the volatility of input parameters on cut-off grade optimisation, a case study of Sungun copper mine”. International Journal of Mining and Mineral Engineering, 7(1): 64-77.
  21. نوروزی، ا.؛ عطایی­‌پور، م.؛ 1396؛ "امکان‌سنجی کاربرد الگوریتم کلونی زنبور مصنوعی در برنامه‌ریزی تولید معادن". پایان نامه کارشناسی ارشد، دانشگاه صنعتی امیرکبیر.