شناسایی و تفکیک هاله های ژئوشیمیایی با روش های خوشه بندی سلسله مراتبی، تکینگی و ماشین بردار پشتیبان

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی معدن، دانشگاه کاشان، کاشان

2 استادیار، گروه مهندسی معدن، دانشگاه کاشان، کاشان

3 دانشیار، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه شاهرود، شاهرود

4 استادیار، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه شاهرود، شاهرود

5 استادیار، دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان

چکیده

در پروژه‌های اکتشافی، شناسایی ناهنجاری‌های ژئوشیمیایی در مناطق مختلف ممکن است تحت تاثیر فرآیندهای زمین‌شناسی، پیچیده‌گی‌های خاصی پیدا کنند. برای حل این ابهامات باید از روش‌های مختلف، برای درک صحیحی از اطلاعات موجود، استفاده شود. در این تحقیق با بیان مفهوم خوشه‌بندی سلسله مراتبی جهت شناسایی عناصر مرتبط با کانی‌سازی، تکینگی و نحوه ترسیم نقشه‌های تکینگی در قالب مدل‌های مولتی‌فراکتال و روش ماشین بردار پشتیبان، نواحی ناهنجار که احتمال کانی‌سازی در آن وجود دارد از مناطق زمینه تفکیک می‌شود. در ابتدا با روش خوشه‌بندی سلسله مراتبی و با استفاده از روش وارد، در خوشه‌های ایجاد شده، دو عنصر طلا و مس به عنوان عناصر مرتبط با کانی‌سازی شناسایی شدند. برای محاسبه شاخص تکینگی این دو عنصر، در هر نقطه از روش مبتنی بر پنجره و رابطه توانی عیار- مساحت استفاده شد. در نهایت با تفکیک مقادیر شاخص تکینگی به دو بخش آموزش و آزمایش و با کمک روش SVM فرآیند طبقه‌بندی و تخمین مقادیر شاخص تکینگی جهت شناسایی مناطق آنومال برای مناطق مجهول انجام پذیرفت. مطالعه موردی بر روی داده‌های مربوط به نمونه‌های سطحی خاک در محدوده کانسار مس پورفیری غنی از طلای دالی به مساحت 900×800 متر مربع واقع در کمربند ماگمایی ارومیه- دختر انجام شده است. نتایج حاصل از روش ترکیبی استفاده شده در این پژوهش با مطالعات قبلی مطابقت خوبی را نشان می‌دهد. در نتیجه استفاده از این روش‌های ترکیبی معرفی شده می‌تواند راهنمای مناسبی در جهت تولید نقشه-های ژئوشیمیایی در مناطق ناشناخته گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification and Separation of Geochemical Halos Using Hierarchical Clustering, Singularity, and Support Vector Machine Methods

نویسندگان [English]

  • Sh. Zangeneh 1
  • M. Abbaszadeh 2
  • S.R. Ghavami Riabi 3
  • M. Ansari Jafari 4
  • H. Asadi Harooni 5
1 Ph.D Student, Dept. of Mining Engineering, University of Kashan, Kashan, Iran
2 Assistant Professor, Dept. of Mining Engineering, University of Kashan, Kashan, Iran
3 Associate Professor, Dept. of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
4 Assistant Professor, Dept. of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
5 Assistant Professor, Dept. of Mining, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

In exploratory projects, the identification of geochemical anomalies in different areas may become complicated under the influence of geological processes. To solve these ambiguities, different methods should be used for a correct understanding of the available information. In this research, by expressing the concept of hierarchical clustering to identify elements related to mineralization, singularity, and how to draw singularity maps in the form of multifractal models and support vector machine method, the anomalous areas where there is a possibility of mineralization are seprated from the context regions. At first, two elements, gold and copper, were identified as elements related to mineralization in the created clusters using the hierarchical clustering method and Ward's method. To calculate the singularity index of these two elements, the method based on the window and the power relation of grade area was used at each point. Finally, by separating the singularity index values into two parts, training and testing, and with the help of the SVM method, the process of classification and estimation of singularity index values was done to identify anomalous areas for unknown areas. A case study has been carried out on the data of the porphyry copper deposit rich in Dali gold with an area of 900×800 meters located in the Urmia-Dokhtar magmatic belt. The data is related to surface soil samples in the target area. The results of this method are consistent with the previous studies conducted in the region. The results of the hybrid method used in this research show good agreement with previous studies. As a result, the use of these introduced hybrid methods can be a suitable guide for the production of geochemical maps in unknown areas.

کلیدواژه‌ها [English]

  • Hierarchical clustering
  • Singularity
  • Support vector machine
  • Porphyry copper
  1. قدیانلو، م.، علیمرادی، ا.، یوسفی، م.؛ 1401؛ "شناسایی نواحی امیدبخش کانی سازی مس پورفیری در ناحیه چهارگنبد استان کرمان با استفاده از روش هوشمند یادگیری سریع". نشریه مهندسی منابع معدنی، دوره 7، شماره 1، ص 61-39.
  2. Afzal, P., Farhadi, S., Boveiri Konari, M., Shamseddin Meigooni, M., and Daneshvar Saein, L. (2022). “Geochemical Anomaly Detection in the Irankuh District Using Hybrid Machine Learning Technique and Fractal Modeling”. Geopersia, 12(1): 191-199.
  3. Ghavami riabi, R. (2007). “Geochemical Exploration of base metal massive sulphide deposits in the eastern part of Namaqua Province and environmental South Africa”. Ph.D Thesis, Pretoria University.
  4. Cloutier, V., Lefebvre, R., Therrien, R., and Savard, M. M. (2008). “Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system”. Journal of Hydrology, 353(3): 294-313.
  5. Bachmann, K., Menzel, P., Tolosana-Delgado, R., Schmidt, C., Hill, M., and Gutzmer, J. (2019). “Multivariate geochemical classification of chromitite seams in the Bushveld Complex, South Africa”. Applied Geochemistry, 103: 106-117.
  6. Rusk, B. G., Reed, M. H., and Dilles, J. H. (2008). “Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana”. Economic Geology, 103: 307-334.
  7. Zhao, Z., Qiao, K., Liu, Y., Chen, J., and Li, C. (2022). “Geochemical Data Mining by Integrated Multivariate Component Data Analysis: The Heilongjiang Duobaoshan Area (China) Case Study”. Minerals, 12(8):1035.
  8. Yu, X., Xiao, F., Zhou, Y., Wang, Y., and Wang, K. (2019). “Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district”. Journal of Geochemical Exploration, 203: 87-95.
  9. Afzal, P., Fadakar Alghalandis, Y., Moarefvand, P., Rashidnejad Omran, N., and Asadi Haroni, H. (2012). “Application of power-spectrum-volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran”. Journal of Geochemical Exploration, 112: 131-138.
  10. Xiang, Z., Gu, X., Wang, E., Wang, X., Zhang, Y., and Wang, Y. (2019). “Delineation of deep prospecting targets by combining factor and fractal analysis in the Kekeshala skarn Cu deposit, NW China”. Journal of Geochemical Exploration, 198: 71-81.
  11. Shamseddin Meigooni, M., Lotfi, M., Afzal, P., Nezafati, N., and Kargar Razi, M. (2021). “Application of multivariate geostatistical simulation and fractal analysis for detection of rare-earth element geochemical anomalies in the Esfordi phosphate mine, Central Iran”. Geochemistry: Exploration, Environment, Analysis, 21(2): geochem2020-035.
  12. Jozani Kohan, G. (2006). “Fractal’s cutie-environment Method for Separation geochemical anomalies from the background”. In: 10th Society for Geological of Iran Congress, Tehran: University of Tarbiat Modares.
  13. پیروزبخت، م.، احدی، م.، اسفندیاری، ب.؛ 1387؛ "کاربرد روش فرکتالی عیار - مساحت جهت تعیین و جداسازی ناهنجاریها از زمینه در نقشههای ژئوشیمیایی رسوبات آبراههای (مطالعه موردی: برگه 1:50000 سه چاهون)". دومین کنفرانس مهندسی معدن، تهران.
  14. Ghannadpour, S. S., and Hezarkhani, A. (2022). “A new method for determining geochemical anomalies: U-N and U-A fractal models”. International Journal of Mining and Geo-Engineering, 56(2): 181-190.
  15. گرانیان، ح.، طباطبایی، س.ح.، اسدی هارونی، ه.، محمدی، آ.؛ 1394؛ "کاربرد روش آنالیز تمایز و ماشین بردار پشتیبان مرحلهای در مدل سازی کانیزایی کانسارهای طلای داشکسن". نشریه مهندسی معدن، دوره 10، شماره 24، ص 65-53.
  16. Nathwani, C. L., Wilkinson, J. J., Fry, G., Armstrong, R. N., Smith, D. J., and Ihlenfeld, C. (2022). “Machine learning for geochemical exploration: classifying metallogenic fertility in arc magmas and insights into porphyry copper deposit formation”. Mineralium Deposita, 57: 1143-1166.
  17. Zaremotlagh, S., and Hezarkhani, A. (2017). “The use of decision tree induction and artificial neural networks for recognizing the geochemical distribution patterns of LREE in the Choghart deposit, Central Iran”. Journal of African Earth Sciences, 128: 37-46.
  18. Lin, N., Chen, Y., Liu, H., and Liu, H. (2021). “A Comparative Study of Machine Learning Models with Hyperparameter Optimization Algorithm for Mapping Mineral Prospectivity”. Minerals, 11(2): 159.
  19. شهرابی، ج.، ذوالقدرشجاعی، ع.؛ 1390؛ "داده کاوی پیشرفته- مفاهیم و الگوریتمها". انتشارات جهاد دانشگاهی واحد دانشگاه صنعتی امیرکبیر، تهران.
  20. Yang, J., Grunsky, E., and Cheng, Q. (2019). “A novel hierarchical clustering analysis method based on Kullback-Leibler divergence and application on dalaimiao geochemical exploration data”. Computers and Geosciences, 123: 10-19.
  21. Zaki, M. J., and Meira Jr, W. (2014). “Data Mining and Analysis: Fundamental Concepts and Algorithms”. Cambridge: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511810114.
  22. Häme, T., Sirro, L., Kilpi, J., Seitsonen, L., Andersson, K., and Melkas, T. (2020). “A Hierarchical Clustering Method for Land Cover Change Detection and Identification”. Remote Sensing, 12(11): 1751.
  23. Han, J., Kamber, M., and Pei, J. (2012). “Data Mining: Concepts and Techniques”. 3rd Edition, Morgan Kaufmann. DOI: https://doi.org/10.1016/C2009-0-61819-5.
  24. Liu, Y., Zhou, K., and Cheng, Q. (2017). “A new method for geochemical anomaly separation based on the distribution patterns of singularity indices”. Computers & Geosciences, 105: 139-147.
  25. Zhang, Y., Liu, S., Zhang, L., and Zhou, Y., Liang, J., Lu, J., Hu, X., Liu, L., Chen, L., Zhang, J., Xu, C., and Dong, X. (2022). “Application of Singularity Theory to the Distribution of Heavy Metals in Surface Sediments of the Zhongsha Islands”. Journal of Marine Science and Engineering, 10(11): 1697.
  26. Cheng, Q. (2007). “Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China”. Ore Geology Reviews, 32(1-2): 314-324.
  27. Li, C., Liu, B., Guo, K., and Binbin, L. (2021). “Regional Geochemical Anomaly Identification Based on Multiple-Point Geostatistical Simulation and Local Singularity Analysis- A Case Study in Mila Mountain Region, Southern Tibet”. Minerals, 11(10): 1037.
  28. Mandelbrot, B. (1974). “Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier”. Journal of Fluid Mechanics, 62: 331-358.
  29. جعفری، م. ا.، نظرپور، ا.، رستمی پایدار، ق.؛ 1400؛ "کاربرد روشهای شاخص سینگولاریتی (SI)، فازی-گاما و AHP برای پتانسیلیابی سرب و روی در ورقه خنداب، منطقه فلززائی ملایر- اصفهان". فصلنامه علمی علوم زمین، دوره 4، شماره 11، ص 96-79.
  30. Yu, H., and Kim, S. (2012). “SVM Tutorial — Classification, Regression and Ranking”. In: Rozenberg, G., Bäck, T., Kok, J. N. (Eds.), Handbook of Natural Computing. Springer, Berlin, Heidelberg.
  31. Xiong, Y., and Zuo, R. (2020). “Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine1”. Computers & Geosciences, 140: 104484.
  32. Jiakang, L., Castagna, J., Dong‐an, L., and Bian, X. (2004). “Reservoir prediction via SVM pattern recognition”. SEG Technical Program Expanded Abstracts, 425-428.
  33. Zuo, R., and Carranza, E. J. M. (2011). “Support vector machine: A tool for mapping mineral prospectivity”. Computers & Geosciences, 37(12): 1967-1975.
  34. Abedi, M., Norouzi, G. H., and Bahroudi, A. (2012). “Support vector machine for multi-classification of mineral prospectivity areas”. Computers & Geosciences. 46: 272-283.
  35. Abbaszadeh, M., Hezarkhani, A., and Soltani Mohammadi, S. (2013). “An SVM-based machine learning method for the separation of alteration zones in Sungun porphyry copper deposit”. Chemie der Erde – Geochemistry, 73(4): 545-554.
  36. Mantero, P., Moser, G., and Serpico, S. B. (2005). “Partially supervised classification of remote sensing images using SVM-based probability density estimation”. IEEE Trans. on Geoscience and Remote Sensing, 43(3): 559-570.
  37. Ge, W., Cheng, Q., Tang, Y., Jing, L., and Gao, C. (2018). “Lithological Classification Using Sentinel-2A Data in the Shibanjing Ophiolite Complex in Inner Mongolia, China”. Remote Sensing, 10(4): 638.
  38. Chen, Y., and Wu, W. (2017). “Mapping mineral prospectivity using an extreme learning machine regression”. Ore Geology Reviews, 80: 200-213.
  39. Shabankareh, M., and Hezarkhani, A. (2017). “Application of support vector machines for copper potential mapping in Kerman region, Iran”. Journal of African Earth Sciences, 128: 116-126.
  40. Wang, Z., Zuo, R., and Dong, Y. (2020). “Mapping Himalayan leucogranites using a hybrid method of metric learning and support vector machine”. Computers and Geosciences, 138: 104455.
  41. Srivastava, D., and Bhambhu, L. (2010). “Data classification using support vector machine”. Journal of Theoretical and Applied Information Technology, 12(1): 1-7.
  42. ماهوش محمدی، ن.، هزارخانی، ا.، 1399؛ "مقایسه روشهای طبقه بندی ماشین بردار پشتیبان و حداکثر احتمال برای تفکیک واحدهای دگرسانی منطقه تخت گنبد". فصلنامه زمین شناسی ایران، دوره 14، شماره 53، ص 43-31.
  43. Mountrakis, G., Im, J., and Ogole, C. (2011). “Support vector machines in remote sensing: A review”. ISPRS journal of photogrammetry and remote sensing, 63(3): 247-259.
  44. اسدی هارونی، ه.، سن سلیمانی، ع.؛ 1390؛ "مطالعات مرحله پی جویی کانسار مس - طلا پورفیری دالی در استان مرکزی". فصلنامه علمی پژوهشی زمین و منابع واحد لاهیجان، دوره 4، شماره 2، ص 16-9.
  45. Asadi Haroni, H. (2008). “First Stage Drilling Report on Dalli Porphyry Cu-Au Prospect, Central Province of Iran”. Technical Report.
  46. Shahabpour, J. (2007). “Island-arc affinity of the Central Iranian Volcani”. Journal of Asian Earth Sciences, 30(5-6): 652-665.
  47. Saremi, F. (2014). “Hydrothermal alteration mapping using combination of the ASTER data and spectroscopic minerals in the Dalli porphyry Cu-Au deposit, Delijan, Markazi province”. M.Sc. Thesis, Shahid Chamran University, Ahvaz.
  48. Stöcklin, J., and Setudinia, A. (1972). “Location map of the Dalli deposit, scale 1:100,000”. Geological Survey of Iran.
  49. Emami, M. (1991). “Explanatory text of the Qom, Geological Quadrangle Map, scale 1:250,000”. Geological Survey of Iran.
  50. دایی جواد، ح.، اسدی هارونی، ه.، طباطبایی، س. ح.؛ 1387؛ "تلفیق دادههای اکتشافی در محدوده اندیس مس - طلا پورفیری دالی با استفاده از منطق فازی جهت تعیین نقاط حفاری". دومین کنفرانس مهندسی معدن ایران، تهران.