توسعه شبکه شکستگی مجزا با اعمال زبری برای شبیه‌سازی ویژگی‌های ناپیوستگی توده‌سنگ

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود

2 استاد، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود

3 دانشیار، دانشکده علوم ریاضی، دانشگاه صنعتی شاهرود، شاهرود

4 استادیار، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود

چکیده

شبیه‌سازی دقیق ویژگی‌های هندسی ناپیوستگی‌ها، یکی از اهداف مهم در مهندسی سنگ است. یکی از توانمندترین روش‌های شبیه‌سازی ماهیت تصادفی ویژگی‌های هندسی ناپیوستگی‌ها، مدل‌سازی تصادفی سه بعدی شبکه ناپیوستگی‌های مجزا (DFN) است که طبیعت ناهمگن توده‌سنگ‌های درزه‌دار با ویژگی‌های هندسی که به طور آماری تعریف شده‌اند را ارایه می‌دهد. تاکنون ویژگی‌های ناپیوستگی‌ها از جمله موقعیت، شکل، جهت‌داری، اندازه (پایایی)، فاصله‌داری و بازشدگی درزه‌ها شبیه‌سازی و در مدل تصادفی سه بعدی شبکه ناپیوستگی‌های مجزا به کار گرفته شده است. در این پژوهش، برای شبیه‌سازی زبری از یک راهکار آماری بر پایه برآورد ناپارامتری توزیع به روش کرنل استفاده شده است. با این روش می‌توان حتی آن دسته از ویژگی‌های هندسی ناپیوستگی‌ها که توابع توزیع مشخصی برای آن‌ها ارایه شده است را نیز شبیه‌سازی کرد. پس از شبیه‌سازی مقدار زبری، هندسه زبری نیز باید به گونه‌ای شبیه‌سازی شود که مقدار زبری را تداعی کند. بر این اساس، در این پژوهش، شبیه‌سازی سطح ناپیوستگی با استفاده از روش دو بعدی شبیه‌سازی زبری ناپیوستگی (DRS) انجام و سپس از دو بعد به سه بعد توسعه داده شده است. در نهایت شبیه‌سازی زبری ناپیوستگی به عنوان یک بسته مجزا به برنامه کامپیوتری DFN-FRAC3D اضافه شده است. برنامه کامپیوتری DFN-FRAC3D به عنوان یکی از توانمندترین ابزار در این حوزه قادر است با استفاده از داده‌های برداشت شده و سپس شبیه‌سازی ویژ‌گی‌های ناپیوستگی، مدل بلوکی سه بعدی شبکه ناپیوستگی‌ها را ارایه دهد، بنابراین با اعمال دستاورد‌های این پژوهش در برنامه کامپیوتری یاد شده، از این پس می‌توان با تمامی ویژگی‌های هندسی ناپیوستگی را شبیه‌سازی کرد. برای نشان دادن نتایج حاصل از این پژوهش، خروجی برنامه کامپیوتری DFN-FRAC3D برای شرایط بدون اعمال ویژگی زبری و با اعمال آن در شبکه ناپیوستگی‌های مجزا مقایسه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Developing a Discrete Fracture Network through Applying Roughness for Simulating Discontinuities Properties of Rock Mass

نویسندگان [English]

  • E. Ameri 1
  • S.M.E. Jalali 2
  • M.R. Rabiee 3
  • M. Noroozi 4
1 Ph.D. Student, Dept. of Mining Engineering, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
2 Professor, Dept. of Mining Engineering, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
3 Associate Professor, Dept. of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran
4 Assistant Professor, Dept. of Mining Engineering, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Accurate simulation of geometrical properties of fractures is an important goal in rock engineering. One of the most capable methods for simulating the random nature of geometrical properties of fractures is Discrete Fracture Network (DFN) random modelling, which presents the heterogeneous nature of fractured rock mass with statistically defined geometrical properties. Up to now, all properties of fractures such as location, shape, orientation, size (persistence), spacing, and opening of joints have been simulated and applied in 3D DFN modelling. In this research, a statistical solution based on Kernel’s non-parametric distribution is used for simulating roughness. Through this method, even those geometric properties of fractures which do not have their own specific distribution functions can be simulated. After simulating the roughness value, the roughness geometry should also be simulated in a way that evokes the roughness value. Therefore, in order to simulate the surface of fractures in this research, the DRS method is applied in 2D and then, developed into 3D. At the end, simulation of discontinuity’s roughness is added as a separate package to DFN-FRAC3D computer program. DFN-FRAC3D computer program, as one of the most capable tools in this field, is able to develop a 3D fracture network block model by using the surveyed data and then simulating geometrical properties of the fracture; thus, by applying the results of this research in this compute software, all geometrical properties of fractures can be simulated. Finally, in order to explain the results of this research, outcomes of DFN-FRAC3D computer program for both with and without applying the roughness property on DFN are compared.

کلیدواژه‌ها [English]

  • DFN-FRAC3D
  • Roughness
  • Simulation
  • JRC
  • DRS
  1. نوروزی، م.، جلالی، س. ا.، کاکایی، ر.؛ 1393؛ "توسعه مدل تصادفی شبکه درزهها با در نظر گرفتن ویژگی آماری اندازه درزه". پنجمین کنفرانس مکانیک سنگ ایران، تهران.
  2. Yin, T., and Chen, Q. (2020). “Simulation-based investigation on the accuracy of discrete fracture network (DFN) representation”. Computers and Geotechnics, 121: 103487.
  3. Noroozi, M., Kakaie, R., and Jalali, S. E. (2015). “3D Geometrical-Stochastical Modeling of Rock mass Joint Networks (Case Study: the Right Bank of Rudbar Lorestan Dam Plant)”. Journal of Geology and Mining Research, 7(1): 1-10. DOI: 10.5897/jgmr14.0213.
  4. Mohebbi, M., Yarahmadi Bafghi, A. R., Fatehi Marji, M., and Gholamnejad, J. (2017). “Rock mass structural data analysis using image processing techniques (Case study: Choghart iron ore mine northern slopes)”. Journal of Mining and Environment, 8(1): 61-74.
  5. Wang, P., Ren, F., and Cai, M. (2020). “Influence of joint geometry and roughness on the multiscale shear behaviour of fractured rock mass using particle flow code”. Arabian Journal of Geosciences, 13(4): 1-14.
  6. Zhang, L., and Einstein, H. H. (2010). “The planar shape of rock joints”. Rock mechanics and rock engineering, 43(1): 55-68.
  7. Xu, C., and Dowd, P. (2010). “A new computer code for discrete fracture network modelling”. Computers and Geosciences, 36(3): 292-301.
  8. Robertson, A. (1970). “The Interpretation of geological factors for use in slope theory”. In: Planning Open Pit Mines-Symp. on the theoretical background to the planning of open pit mines with special reference to slope st., 55-71.
  9. Sari, M., Karpuz, C., and Ayday, C. (2010). “Estimating rock mass properties using Monte Carlo simulation: Ankara andesites”. Computers and Geosciences, 36(7): 959-969.
  10. Baecher, G. B., Lanney, N. A., and Einstein, H. H. (1977). “Statistical description of rock properties and sampling”. In: The 18th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
  11. Zadhesh, J., Jalali, S. M. E., and Ramezanzadeh, A. (2014). “Estimation of joint trace length probability distribution function in igneous, sedimentary, and metamorphic rocks”. Arabian Journal of Geosciences, 7(6): 2353-2361.
  12. Kulatilake, P. H. S., Chen, J., Teng, J., Shufang, X., and Pan, G. (1996). “Discontinuity geometry characterization in a tunnel close to the proposed permanent shiplock area of the three gorges dam site in China”. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 33(3): 255-277.
  13. Kulatilake, P. H. S. W. (1993). “Application of probability and statistics in joint network modeling in three dimensions”. In: Conference on Probabilistic Methods in Geotechnical Engineering, 63-78.
  14. Zeeb, C., Gomez-Rivas, E., Bons, P. D., Virgo, S., and Blum, P. (2013). “racture network evaluation program (FraNEP): A software for analyzing 2D fracture trace-line maps”. Computers and Geosciences, 60: 11-22.
  15. Baecher, G. B. (1983). “Statistical analysis of rock mass fracturing”. Mathematical Geology, 15(2): 329-348.
  16. Li, A., Li, Y., Wu, F., Shao, G., and Sun, Y. (2022). “Simulation Method and Application of Three-Dimensional DFN for Rock Mass Based on Monte-Carlo Technique”. Applied Sciences, 12(22): 11385.
  17. Ortega, O., and Marrett, R. (2000). “Prediction of macrofracture properties using microfracture information, Mesaverde Group sandstones, San Juan basin, New Mexico”. Journal of Structural Geology, 22(5): 571-588.
  18. Zhang, L., and Einstein, H. H. (2000). “Estimating the intensity of rock discontinuities”. International Journal of Rock Mechanics and Mining Sciences, 37(5): 819-837.
  19. Priest, S. D. (2004). “Determination of discontinuity size distributions from scanline data”. Rock Mechanics and Rock Engineering, 37(5): 347-368.
  20. Song, J. J. (2006). “Estimation of a joint diameter distribution by an implicit scheme and interpolation technique”. International Journal of Rock Mechanics and Mining Sciences, 43(4): 512-519.
  21. Doyuran, V., Ayday, C., and Karahanoglu, N. (1993). “Statistical analyses of discontinuity parameters of Gölbaši (Ankara) Andesites, Süpren (Eskišehir) marble, and Porsuk Dam (Eskišehir) peridotite in Turkey”. Bulletin of Engineering Geology & the Environment, 48(1): 15-31.
  22. Kulatilake, P. H., Um, J. G., Wang, M., Escandon, R. F., and Narvaiz, J. (2003). “Stochastic fracture geometry modeling in 3-D including validations for a part of Arrowhead East Tunnel, California, USA”. Engineering Geology, 70(1-2): 131-155.
  23. [23] Einstein, H. H., and Baecher, G. B. (1983). “Probabilistic and statistical methods in engineering geology”. Rock Mechanics and Rock Engineering, 16(1): 39-72.
  24. Piteau, D. R. (1973). “Characterizing and extrapolating rock joint properties in engineering practice”. In: Geomechanik Fortschritte in der Theorie und deren Auswirkungen auf die Praxis/Geomechanics—Progress in Theory and Its Effects on Practice, 5-31.
  25. Priest, S. D., and Hudson, J. A. (1981). “Estimation of discontinuity spacing and trace length using scanline surveys”. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 18(3): 183-197.
  26. Hu, X., Wu, F., and Sun, Q. (2011). “Elastic modulus of a rock mass based on the two parameter negative-exponential (TPNE) distribution of discontinuity spacing and trace length”. Bulletin of Engineering Geology and the Environment, 70(2): 255-263.
  27. Baghbanan, A. (2008). “Scale and stress effects on hydro-mechanical properties of fractured rock masses”. PhD Diss., KTH.
  28. نوروزی، م.، جلالی، س. ا.، کاکایی، ر.؛ 1393؛ "شبیه سازی هندسی سه بعدی شبکه ی ناپیوستگی های توده سنگ در محل احداث تونل دسترسی سد رودبار لرستان". مهندسی تونل و فضاهای زیرزمینی، دوره اول، شماره 1، ص 68-53.
  29. Esteban, N., Galindo, R., and Serrano, A. (2021). “Analytical formulation for the deformability assessment of rock masses with filled discontinuities”. Computers and Geotechnics, 136: 104111.
  30. Wu, N., Liang, Z., Zhang, Z., Li, S., and Lang, Y. (2022). “Development and verification of three-dimensional equivalent discrete fracture network modelling based on the finite element method”. Engineering Geology, 306: 106759.
  31. Hastie, T., Tibshirani, R., and Friedman, J. (2001). “The Elements of Statistical Learning”. Springer series in statistics, New York, NY, USA
  32. Wand, M. P., and Jones, M. C. (1994). “Kernel smoothing”. First Edition, CRC press, New York, pp. 224.
  33. Bahaaddini, M., Serati, M., Khosravi, M. H., and Hebblewhite, B. (2022). “Rock joint micro-scale surface roughness characterisation using photogrammetry method”. Journal of Mining and Environment, 13(1): 87-100.
  34. Barton, N., and Choubey, V. (1977). “The shear strength of rock joints in theory and practice”. Rock Mechanics and Rock Engineering, 10(1): 1-54.
  35. Develi, K., Babadagli, T. T., and Comlekci, C. (2001). “A new computer-controlled surface-scanning device for measurement of fracture surface roughness”. Computers and Geosciences, 27(3): 265-277.
  36. Grasselli, G., Wirth, J., and Egger, P. (2002). “Quantitative three-dimensional description of a rough surface and parameter evolution with shearing”. International Journal of Rock Mechanics and Mining Sciences, 39(6): 789-800.
  37. Herda, H. H. W. (2006). “An algorithmic 3D rock roughness measure using local depth measurement clusters”. Rock Mechanics and Rock Engineering, 39(2): 47-158.
  38. Tse, R., and Cruden, D. M. (1979). “Estimating joint roughness coefficients”. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 16(5): 303-307. DOI: 10.1016/0148-9062(79)90241-9.
  39. Yu, X., and Vayssade, B. (1991). “Joint profiles and their roughness parameters”. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 28(4): 333-336.
  40. Tatone, B. S. A., and Grasselli, G. (2010). “A new 2D discontinuity roughness parameter and its correlation with JRC”. International Journal of Rock Mechanics and Mining Sciences, 47: 1391-1400.
  41. Jang, H. S., Kang, S. S., and Jang, B. A. (2014). “Determination of joint roughness coefficients using roughness parameters”. Rock Mechanics and Rock Engineering, 47(6): 2061-2073.
  42. Zhang, H., Zhang, C., Yang, Z., Li, Z., and Wang, C. (2021). “A Novel Discontinuity Roughness Parameter and Its Correlation with Joint Roughness Coefficients”. Energies, 14(22): 7631.
  43. Yong, R., Huang, L., Hou, Q., and Du, S. (2020). “Class Ratio Transform with an Application to Describing the Roughness Anisotropy of Natural Rock Joints”. Advances in Civil Engineering 2020, 1-14.
  44. Feng, Q., Fardin, N. Jing, L. and Stephansson, O. (2003). “A new method for in-situ non-contact roughness measurement of large rock fracture surfaces”. Rock Mechanics and Rock Engineering, 36(1): 3-25.
  45. Barton, N. (1982). “Shear strength investigations for surface mining”. Proceedings of the 23rd US Rock Mechanics Symposium Vancouver, 178-180.
  46. Palmström, A., Sharma, V. I., and Saxena, K. (2001). “Measurement and characterizations of rock mass jointing”. Chap. 2 in In-situ characterization of rocks, 1-40.
  47. عامری، ع.، جلالی، س. م. ا.، ربیعی، م. ر.؛ 1400؛ "ارایه روشی جدید برای شبیه سازی هندسی آماری زبری ناپیوستگیها". نشریه روش‌های تحلیلی و عددی مهندسی معدن، دوره 27، ص 66-55.
  48. عامری، ع.، جلالی، س. م. ا.، ربیعی، م. ر.؛ 1397؛ "تولید نمونه تصادفی از برآورد تابع توزیع احتمال به روش کرنل (مطالعه موردی تعیین زبری درزه توده سنگ)". چهاردهمین کنفرانس بین آمار، شاهرود.