ارایه مدلی برای تفکیک بین آنومالی‌های واقعی و کاذب با استفاده از طبقه‌بندی داده‌ها

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود

2 دانشیار، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود

چکیده

تلفیق داده‌ها یکی از روش‌هایی است که با استفاده از آن می‌توان مطالعات اکتشافی در مقیاس ناحیه‌ای را به صورت یکجا و همزمان بر روی همه داده‌های در دسترس از منطقه مورد مطالعه انجام داد. نتایجی که با در نظر گرفتن همه داده‌ها و ارتباط میان آنها به دست می‌آید، دقت و اطمینان بیشتری دارد. در چنین شرایطی عموما از مدل‌سازی پتانسیل معدنی برای تعیین نواحی امیدبخش استفاده می‌شود. در روش جدید معرفی شده در مقاله حاضر ضمن بررسی تئوری زونالیته ژئوشیمیایی در بهبود بخشیدن به نتایج به دست آمده از تهیه مدل پتانسیل معدنی، بخشی از زون فلززایی ارسباران انتخاب و ارایه نقشه آنومالی فوق و تحت کانسار، محدوده‌های کانی‌سازی پنهان و پراکنده معرفی شده بررسی شد. همچنین نقشه‌های شاهد ژئوشیمی تک عنصری، نقشه‌های ژئوشیمی تولید شده با روش زونالیته، ساختاری، دگرسانی و زمین‌شناسی با استفاده از موقعیت اندیس‌های شناخته شده با روش وزن‌های نشانگر وزن‌دهی و تولید و در مرحله بعد برای تهیه مدل‌های پتانسیل معدنی لایه‌های وزن‌دار اطلاعاتی با روش لجستیک رگرسیون (LR) تلفیق شدند. در پایان از رخدادهای معدنی شناخته شده کانی‌سازی مس پورفیری منطقه برای ارزیابی مدل‌های تولید شده استفاده شد که نتایج نشان می‌دهد مناطق مشخص شده برای اکتشاف با استفاده ازمدل تهیه شده با استفاده از نقشه شاهد ژئوشیمی زونالیته، انطباق خوبی با رخدادهای معدنی موجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presenting a Model for Distinguishing Between True and False Anomalies Using Data Classification

نویسندگان [English]

  • M. Kharashadi Zadeh 1
  • M. Ziaii 2
1 Ph.D Student, Dept. of Mining Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
2 Associate Professor, Dept. of Mining Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Data integration can be used to conduct exploratory studies on a regional scale simultaneously on all available data from the study area. The results obtained by considering all the data and the relationship between them are more accurate and reliable. In these cases, mineral potential modeling is utilized to determine promising areas. Although GIS-based mineral prospectivity mapping methods have been established, it is important to review which methods of geochemical data analysis result in anomaly maps that, in turn, lead to better models of mineral prospectivity. In this study, instead of using anomalies of pathfinder elements, using geochemical zonality anomalies as one of the several evidential maps resulted in the improved mapping of mineral prospectivity. In addition, whereas weights-of-evidence analysis was used in this study, other methods of data representation and integration for mineral prospectivity mapping can be used. In this study, a part of Arasbaran metallogenic zone was selected and one-element geochemical control maps, geochemical maps produced by zonality, structural, alteration and geological maps were weighted and produced using the position of known indices by the method of weights-of-evidence. In the next step, weighted layers were combined with logistic regression (LR) method to prepare mineral potential models.

کلیدواژه‌ها [English]

  • Porphyry copper deposit
  • Weights of evidence
  • Mineral potential model
  • Geochemical zonality
  1. Jamali, H., and Mehrabi, B. (2014). “Relationships between arc maturity and Cu-Mo-Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran Magmatic Belt”. Ore Geology Reviews, 65: 497-501. DOI: https://doi.org/10.1016/j.oregeorev.2014.06.017.
  2. Chung, C. F., and Agterberg, F. P. (1980). “Regression models for estimating mineral resources from geological map data”. Mathematical Geology, 12: 473-488.
  3. Bonham-Carter, G. F. (1994). “Geographic information systems for geoscientists: modeling with GIS”. Computer Methods in the Geoscientists, 13: pp. 398.
  4. Carranza, E. J. M. (2014). “Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values”. Natural Resources Research, 24: 291-304.
  5. Zuo, R., and Carranza, E. J. M. (2011). “Support vector machine: A tool for mapping mineral prospectivity”. Computers Geosciences, 37: 1967-1975.
  6. Parsa, M., Maghsoudi, A., and Yousefi, M. (2018). “Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran”. Ore Geology Reviews, 92: 97-112.
  7. Xiang, J., Xiao, K., Carranza, E. J. M., Chen, J., and Li, S. (2020). “3D mineral prospectivity mapping with random forests: A case study of Tongling, Anhui, China”. Natural Resources Research, 29(1): 395-414.
  8. Kou, G. Y., Xu, B., Zhou, Y., Zheng, Y. C., Hou, Z. Q., Zhou, L. M., Zhang, Y. F., and Yu, J. X. (2021). “Geology and petrogenesis of the Sungun deposits: Implications for the genesis of porphyry-type mineralisation in the NW Urumieh–Dokhtar magmatic Arc, Iran”. Ore Geology Reviews, 131: 104013.
  9. Zhang, S., Carranza, E. J. M., Xiao, K., Wei, H., Yang, F., Chen, Z., Li, N., and Xiang, J. (2022). “Mineral prospectivity mapping based on isolation forest and random forest: Implication for the existence of spatial signature of mineralization in outliers”. Natural Resources Research, 31(4): 1981-1999. DOI: 10.1007/s11053-021-09872-y.
  10. Carranza, E. J. M., and Laborte, A. G. (2015). “Random Forest predictive modeling of mineral prospectively with small numbers of prospects and data with missing values”. Computers & Geosciences, 74: 60-70.
  11. نیک‌فرجام، م.، هزارخانی، ا.، پازند، ک.؛ 1397؛ "کاربرد روش میانگین هندسی در تلفیق لایه‌های اطلاعاتی ژئوشیمیایی برای تولید نقشه شاهد ژئوشیمی". نشریه مهندسی منابع معدنی، دوره سوم، شماره 1، ص 1-11.
  12. دایا، ع. ا.، مرادی، ر.؛ 1397؛ "مقایسه مدلهای فرکتالی عیار-تعداد C-N و عیار-مساحت C-A در جداسازی بیهنجاریهای ژئوشیمیایی از زمینه در برگه یکصدهزار سیه رود، شمال غرب ایران". نشریه علمی-پژوهشی روشهای تحلیلی و عددی در مهندسی معدن، شماره 16، ص 94-87.
  13. مهرپرتو، م.، امینی فضل، آ.، رادفر، ج.؛ 1371؛ "نقشه زمین شناسی1:100،000 ورزقان". سازمان زمین شناسی و اکتشاف معدنی کشور.
  14. Mehrparto, M. (1997). “Geological Quadrangle Map of Siahrood, 1:100000”. Geological Survey of Iran. (In Persian).
  15. آقانباتی، س. ع.؛ 1383؛ "زمین شناسی ایران". نشر سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  16. Zürcher, L., Bookstrom, A., Hammarstrom, J. M., Mars, J. C., Ludington, S., Zientek, M. L., Dunlap, P., and Wallis, J. C. (2014). “Porphyry copper assessment of the Tethys region of western and southern Asia”. U.S. Geological Survey Scientific Investigations, Report 2010-5090-v, pp. 232. DOI:10.3133/sir20105090V.
  17. محمدزاده، م. ج.،  شهین فر، ح.، ناصری، آ.؛ 1390؛ "توصیف الگوهای ژئوشیمیایی با استفاده از روش های تحلیل مؤلفه اصلی وکلاستر فازی میانمرکز (FCMC) (برای ثبت بیهنجاری‌های ضعیف (منطقه قولان- آذربایجان شرقی)". نشریه علوم زمین، سال بیست و یکم، شماره 81 ، ص 143-150.
  18. Beus, A. A., and Grigorian, S. V. (1977). “Geochemical Exploration Methods for Mineral Deposits”. Applied Publishing Ltd., Wilmette, Illinois, pp. 287.
  19. Solovov, A. P. (1987). “Geochemical prospecting for mineral deposits”. In: Kuznetsov, V. V. (Trans.), Engl. (Ed.), Mir, Moscow, pp. 288.
  20. Agterberg, F. P. (1994). “Fractals, multifractals and change of support”. In: Dimitrakopoulos, R. (Ed.), Geostatistics for the next century, Dordrecht: Kluwer, 223-234.
  21. Cheng, Q., Agterberg, F. P., and Ballantyne, S. B. (1994). “The separation of geochemical anomalies from background by fractal methods”. Journal of Geochemical Exploration, 51(2): 109-130.
  22. Afzal, P., Khakzad, A., Moarefvand, P., Rashidnejad Omran, N., Esfandiari, B., and Fadakar Alghalandis, Y. (2010). “Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran”. Journal of Geochemical Exploration, 104: 34-46.
  23. Agterberg, F. P. (2012). “Multifractals and geostatistics”. Journal of Geochemical Exploration, 122: 13-122.
  24. Cheng, Q. (2006). “GIS based fractal/multifractal anomaly analysis for modeling and prediction of mineralization and mineral deposits”. In: Harris, J. R. (Ed.), GIS for the Earth Sciences, St. Johns, Newfoundland: Geological Association of Canada, 285-296.
  25. Hassanpour, Sh., and Afzal, P. (2013). “Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran”. Arabian Journal of Geosciences, 6: 957-970.
  26. Ziaii, M. (1996). “Lithogeochemical exploration methods for porphyry copper deposit in Sungun, NW Iran”. M.Sc. Thesis, Moscow State University, Moscow.
  27. Ziaii, M., Pouyan, A. A., and Ziaei, M. (2009). “Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies”. Journal of Geochemical Exploration, 100(1): 25-36.
  28. Solovov, A. P. (Ed.), (1990). “Handbook on geochemical prospecting for useful minerals”. Nedra Publishing House, Moscow, pp. 336.
  29. Ziaii, M., Carranza, E. J. M., and Ziaei, M. (2011). “Application of geochemical zonality coefficients in mineral prospectivity mapping”. Computers & geosciences, 37(12): 1935-1945.
  30. Palomera, R. P. (2004). “Application of Remote Sensing and Geographic Information Systems for Mineral Predictive Mapping, Deseado Massif, Southern Argentina”. M.Sc. Thesis, International Institute for Geo-Formation Science and Earth Observation Enschede, the Netherlands.
  31. Carranza, E. J. M. (2008). “Geochemical Anomaly and Mineral Prospectivity Mapping in GIS”. Handbook of Exploration and Environmental Geochemistry, Elsevier, Amsterdam, 11: pp 351.
  32. Agterberg, F. P., Bonham-Carter, G. F., and Wright, D. F. (1990). “Statistical pattern integration for mineral exploration”. In: Gaa´, l. G., Merriam, D. F. (Eds.), Computer Applications in Resource Estimation. Pergamon Press, Oxford, 1-21.
  33. Agterberg, F. P., and Cheng, Q. (2002). “Conditional independence test for weights-of-evidence modeling”. Natural Resources Research, 11: 249-255.