تحلیل عددی لرزش‌های ناشی از انفجار ترانشه بر خط لوله انتقال آب شرب تبریز

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی معدن، دانشکدگان فنی، دانشگاه تهران

2 کارشناسی ارشد، دانشکده مهندسی معدن، دانشکدگان فنی، دانشگاه تهران

3 دانشجوی دکترا، دانشکده مهندسی معدن، دانشکدگان فنی، دانشگاه تهران

چکیده

امروزه با توسعه فعالیت‌های معدنی و عمرانی استفاده از عملیات انفجار به دلیل کاهش زمان و هزینه افزایش پیدا کرده است. استفاده از انفجار برای حفاری و خردایش سنگ علاوه بر مزایای آن معایبی دارد که از مهم‌ترین آنها می‌توان به لرزش‌ زمین اشاره کرد. لرزش‌های ناشی از انفجار بخش مهم و قابل توجهی از فرآیند انفجار بوده و همواره کنترل میزان آن برای کاهش خسارت‌های احتمالی به مناطق اطراف لازم است. در این مقاله داده‌های میدانی انفجار انجام گرفته در پروژه خط دوم آبرسانی تبریز با استفاده از دستگاه‌های لرزه‌نگار سه مولفه‌ای Blast Recorder برداشت شده است. با مدل‌سازی فرآیند انفجار در نرم‌افزار المان محدود ANSYS-Autodyn رفتار محیط محدوه انفجار شبیه‌سازی شده است. میانگین خطاهای مدل‌سازی عددی نسبت به برداشت‌های میدانی حدود 20 درصد برآورد شده است. با توجه به مدل‌سازی عددی بحرانی‌ترین حالت سرعت وارد شده به خط لوله کمتر از استانداردهای مجاز انفجار در نزدیکی خط لوله بوده و حداکثر تنش، کرنش و جابه‌جایی در مرز لوله و محیط به ترتیب برابر MPa 24/17، µmm/mm 135 و mm 18/0 است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Analysis of Trench Blast-Induced Vibration on Tabriz Drinking Water Pipelines

نویسندگان [English]

  • Hassan Bakhshandeh Amnieh 1
  • Sajjad Azari Doudaran 2
  • behnam alipenhani 3
1 Associate professor, School of Mining, College of Engineering, University of Tehran
2 M. SC, School of Mining, College of Engineering, University of Tehran
3 PhD Candidate, School of Mining, College of Engineering, University of Tehran
چکیده [English]

Nowadays, duo to mining and construction activities' progression, the need to utilize blasting has been increasing in order to reduce time and cost. The use of blast for drilling and crushing rock, in addition to its advantages, has disadvantages, the most important of which is ground vibration. Vibration caused by the blast is an important and significant part of the blast process and controling its amount in order to reduce possible damage to the surrounding areas, is always necessary. In this paper, the field data of the blast in the second line of the Tabriz water pipeline project have been collected using three-component Blast Recorder seismographs. By modeling the process of blast in ANSYS-Autodyn finite element software, the behavior of the blast zone environment is simulated. The average of numerical modeling errors compared to field surveys is estimated at about 20%. According to the numerical modeling, the most critical state of velocity entering the pipeline is less than the allowable blast standards near the pipeline, and the maximum stress, strain, and displacement in the boundary of pipe and soil are equal to 17.24 MPa, 135 μmm /mm, and 0.18 mm, respectively.

کلیدواژه‌ها [English]

  • Blasting
  • Ground Vibration
  • PPV
  • Water Pipeline
  • ANSYS-Autodyn
  1. Jimeno, E. L., Jimino, C. L., and Carcedo, A. (1995). “Drilling and blasting of rocks”. CRC Press, pp. 408.
  2. مرتضوی، ع.؛ 1394؛ "دینامیک سنگ". انتشارات دانشگاه صنعتی امیرکبیر.
  3. امرا، م.؛ 1392؛ "ارزیابی تأثیر آتشباری بر لوله‌های انتقال گاز (مطالعه موردی تونل راه آهن جاده قم – دلیجان)". پایان‌نامه کارشناسی ارشد، دانشکده مهندسی معدن، دانشگاه تهران.
  4. Duvall, W. I., and Fogelson, D. E. (1962). “Review of criteria for estimating damage to residences from blasting vibrations”. U.S. Bureau of Mines, RI 5868.
  5. Langefors, U., and Kihlström, B. (1978). “The modern technique of rock blasting”. Wiley, pp. 438.
  6. Ambraseys, N. R., and Hendron, A. J. (1968). “Dynamic behavior of rock masses in rock mechanics in engineering practice (KG Stagg & OC Zienkievicz, Eds.)”. John Wiley and Sons, New York.
  7. Bureau of Indian Standards. (1973). “Criteria for safety and design of structures subjected to underground blast”. Bureau of Indian Standards, New Delhi, India.
  8. Ghosh, A., and Daemen, J. J. K. (1983). “A simple new blast vibration predictor (based on wave propagation laws)”. In: the 24th US Symposium on Rock Mechanics (USRMS).
  9. Wang, Z., Lu, Y., Hao, H., and Chong, K. (2005). “A full coupled numerical analysis approach for buried structures subjected to subsurface blast”. Computers & Structures, 83(4-5): 339-356.
  10. Kouretzis, G. P., Bouckovalas, G. D., and Gantes, C. J. (2007). “Analytical calculation of blast-induced strains to buried pipelines”. International Journal of Impact Engineering, 34: 1683-1704.
  11. Yankelevsky, D. Z., Feldgun, V. R., and Karinski, Y. S. (2008). “Underground explosion of a cylindrical charge near a buried wall”. International Journal of Impact Engineering, 35: 905-919.
  12. Xu, G., Deng, Z., Deng, F., and Liu, G. (2013). “Numerical simulation on the dynamic response of buried pipelines subjected to blast loads”. Advanced Materials Research, 671-674: 519-522.
  13. پرویز، م.، امین‌نژاد، ب.، فیوض، ع.، علیزاده الیزئی، م. ه.؛ 1397؛ "مدل‌سازی عددی اثر انفجار بر خطوط لوله‌های مدفون انتقال نفت و گاز در خاک‌های مختلف به روش اویلری-لاگرانژی". نشریه مهندسی سازه و ساخت، دوره 5، ص 88-108.
  14. بخشنده امنیه، ح.، جعفری، و.، شیرین، د.؛ 1397؛ "تحلیل عددی اثر امواج لرزش ناشی از انفجار آزادراه ایذه-کارون3 بر خطوط لوله نفت و گاز". سومین کنفرانس بین‌المللی عمران معماری و طراحی شهری، تبریز.
  15. Siskind, D. E., Stagg, M. S., Wiegand, J. E., and Schulz, D. L. (1994). “Surface mine blasting near transmission pipelines”. Technical Report, Unated State Department of the Interior, RI9523.
  16. Rigas, F. (2009). “Safety of buried pressurized gas pipelines near explosion sources”. Proceedings of the 1st Annual Gas Processing Symposium, 1-10.
  17. Topkaraoglu, E. (2014). “Design and development of a cylinder expansion test setup for determination of equation of state parameters of various explosives”. Master’s Thesis, Mechanical Engineering, Middle East Technical University.
  18. ANSYS Inc. (2015). “ANSYS Mechanical APDL Material Reference”. In: Advanced Materials Research, Trans Tech Publications Ltd, 1079: 198-201.
  19. شرکت مهندسی مشاور مهاب قدس؛ 1396؛ "گزارش لرزش‌های ناشی از انفجارات بر روی خطوط انتقال آب در پروژه خط دوم آبرسانی به تبریز از زرینه رود".
  20. Park, D., and J.-Kwang, A. (2016). “Numerical simulation of blast induced vibration propagation”. Japanese Geotechnical Society Special Publication, 4(2): 23-26.