پیش بینی قیمت نفت خام با استفاده از روش متن کاوی و مدلسازی داده های بزرگ

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشیار، دانشکده اقتصاد، دانشگاه رازی، کرمانشاه

2 استادیار، دانشکده اقتصاد، دانشگاه پیام نور، تهران

3 دانشجوی دکتری، دانشکده اقتصاد، دانشگاه رازی، کرمانشاه

چکیده

هدف این تحقیق بررسی پیش‌بینی قیمت نفت با رهیافت متن کاوی و مدل داده‌‌های بزرگ است. برای استخراج خودکار ویژگی‌های متن از اخبار آنلاین نفت خام از روش  شبکه عصبی کانولوشنال استفاده می‌‌شود و از این طریق قدرت توضیح‌دهندگی مدل افزایش می‌یابد. همچنین حالت مختلف سری زمانی با استفاده از تجزیه حالت از روش کانولوشن مورد استفاده قرار می‌گیرد. نزدیک به 13000 عنوان خبری  طی سال‌‌های 2021-2011 جمع‌آوری شد و در نتیجه مشخص شد روش‌‌های پیش‌بینی مبتنی بر متن‌کاوی و داده‌های بزرگ مبتنی بر اینترنت از روش‌های دیگر بهتر عمل می‌کند. از این رو می‌توان گفت ارتباط موازی عنوان‌های خبری و تیتر آن‌‌ها و جستجو در موتور جستجوی گوگل در پیش‌بینی دقیق قیمت نفت خام بسیار مناسب است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Crude Oil Price Forecasting Using Text Mining and Big Data Modeling

نویسندگان [English]

  • Sh. Fattahi 1
  • S. Kianpoor 2 3
  • K. Soheili 1
1 Associate Professor, Faculty of Economics, Razi University, Kermanshah, Iran
2 Assistant Professor, Faculty of Economics, Payame Noor University, Tehran, Iran
3 Ph.D Student, Faculty of Economics, Razi University, Kermanshah, Iran
چکیده [English]

This study uses data modeling and text mining techniques for oil price predictions. To improve the model's explanatory capability, text features from internet news articles on crude oil are automatically extracted using convolutional neural networks. Additionally, various time series models employ a state analysis approach called convolution. The years 2021 to 2011 saw the collection of almost 13000 news items, and it was discovered that text mining and data from large Internet-based apps perform better for prediction than other approaches. This means that it is pretty fair to say that there is a parallel link between news headlines, those headlines, and searches in the Google search engine. This relationship is highly appropriate for correctly forecasting the price of crude oil.

کلیدواژه‌ها [English]

  • Oil price
  • Google trends
  • Data mining
  • Deep learning
  • Convolution neural network
  1. Abdollahi, H. (2020). “A novel hybrid model for forecasting crude oil price based on time series decomposition”. Applied Energy, 267: 115035.
  2. Yu, L., Zhao, Y., Tang, L., and Yang, Z. (2019). “Online big data-driven oil consumption forecasting with Google Trends”. International Journal of Forecasting, 35(1): 213-223.
  3. Li, X., Ma, J., Wang, S., and Zhang, X. (2015). “How does Google search affect trader positions and crude oil price?”. Economic Modelling, 49: 162-171.
  4. Fronzetti Colladon, A. (2020). “Forecasting election results by studying brand importance in online news”. International Journal of Forecasting, 36(2): 414-427.
  5. Zhao, L. T., Wang, Y., Guo, S. Q., and Zeng, G. R. (2018). “A novel method based on numerical fitting for oil price trend forecasting”. Applied Energy, 220: 154-163.
  6. Bekiroglu, K., Duru, O., Gulay, E., Su, R., and Lagoa, C. (2018). “Predictive analytics of crude oil price by utilizing the intelligent model search engine”. Applied Energy, 228: 2387-2397.
  7. Atalla, T., Joutz, F., and Pierru, A. (2016). “Does disagreement among oil price forecasters reflect volatility? Evidence from the ECB surveys”. International Journal of Forecasting, 32(4): 1178-1192.
  8. Li, X, Shang, W, and Wang, S. (2019). “Text-based crude oil price forecasting: A deep learning approach”. International Journal of Forecasting, 35(4): 1548-1560.
  9. [9] Shahbaz, M., Tiwari, A. K., and Tahir, M. I. (2015). “Analyzing time–frequency relationship between oil price and exchange rate in Pakistan through wavelets”. Journal of Applied Statistics, 42(4): 690-704.
  10. Ma, X., Jin, Y., and Dong, Q. (2017). “A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting”. Applied Soft Computing, 54: 296-312.
  11. Wang, J., Li, X., Hong, T., and Wang, Sh. (2018). “A semi-heterogeneous approach to combining crude oil price forecasts”. Information Sciences, 460: 279-292.
  12. Wex, F., Widder, N., Liebmann, M., and Neumann, D. (2013). “Early warning of impending oil crises using the predictive power of online news stories”. In: 2013 46th Hawaii International Conference on System Sciences, 1512-1521. DOI: 10.1109/HICSS.2013.186.
  13. Hemmatian, F., and Sohrabi, M. K. (2019). “A survey on classification techniques for opinion mining and sentiment analysis”. Artificial Intelligence Review, 52: 1495-1545.
  14. Shaterkhbazi, M., Solh Mirzaei, Kh., and Kianpour, S. (2021). “The Role of the Convention on Intellectual Property Rights and Moral Corruption on Iran’s Economic Growth”. Journal of Ethics in Science and Technology, 16(2): 187-189. (In Persian).
  15. Shaterkhbazi, M., Kianpour, S., and Homayounfar, A. (2022). “The Relationship between Corruption and Business Environment with Economic Growth and Development”. Journal of Ethics in Science and Technology, 16(4): 111-118. (In Persian).
  16. Qayyum, A., Anwar, S. M., Awais, M., and Majid, M. (2017). “Medical image retrieval using deep convolutional neural network”. Neurocomputing, 266: 8-20,
  17. Wu, B., Wang, L., Lv, Sh., and Zeng, Y. (2021). “Effective crude oil price forecasting using new text-based and big-data-driven model”. Elsevier, 168: 108468.
  18. Dragomiretskiy, K., and Zosso, D. (2013). “Variational mode decomposition”. IEEE Transactions on Signal Processing, 62(3): 531-544. DOI: 10.1109/TSP.2013.2288675.
  19. Hu, H. L., Wang, L., and Lv, S. X. (2020). “Forecasting energy consumption and wind power generation using deep echo state network”. Renewable Energy, 154: 598-613.
  20. Hu, H. L., Wang, L., Peng, L., and Zeng, Y. R. (2020). “Effective energy consumption forecasting using enhanced bagged echo state network”. Energy, 193: 116778.
  21. Bildirici, M., Bayazit, N., and Ucan, Y. (2020). “Analyzing crude oil prices under the impact of COVID-19 by using LSTARGARCHLSTM”. Energies, 13(11): 2980.
  22. Elshendy, M., Fronzetti Colladon, A., Battistoni, E., and Gloor, P. (2018). “Using four different online media sources to forecast the crude oil price”. Journal of Information Science, 44(3): 408- 421.