بررسی کمی منابع کرومیت انبانه ای در افیولیت‌های نائین به روش ارزیابی سه بخشی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه مهندسی معدن، دانشگاه کاشان، کاشان

2 دانشیار، گروه مهندسی معدن، دانشگاه کاشان، کاشان

3 کارشناسی ارشد، گروه مهندسی معدن، دانشگاه کاشان، کاشان

چکیده

کرومیت با مصرف گسترده در صنایع مختلف یکی از فلزات استراتژیک به شمار می‌رود. در میان انواع مختلف کانسارهای کرومیت ایران، کرومیت‌های انبانه‌ای از لحاظ اقتصادی بیشتر مورد توجه قرار گرفته‌اند. از طرفی برنامه‌ریزی برای تصمیم‌گیری در خصوص سرمایه‌گذاری در زمینه اکتشاف منابع معدنی، نیازمند تخمین‌های دقیق و قابل استناد از کمیت (تناژ) و کیفیت ماده معدنی (عیار) مورد انتظار است. ارایه تخمینی از کیفیت و کمیت ماده معدنی مورد انتظار در محدوده‌های اکتشافی نیازمند ارزیابی کمی منابع معدنی بر پایه مدل‌های توصیفی، چگالی و تناژ- عیار متوسط تیپ‌های مختلف کانساری انجام می‌پذیرد. در این تحقیق از روش ارزیابی سه بخشی، برای ارزیابی کمی منابع کرومیت انبانه‌ای در افیولیت‌های نائین استفاده شده است. این روش با در نظر گرفتن رابطه معکوس بین مساحت نواحی امیدبخش کانسار مورد نظر و چگالی کانسار به بررسی احتمال رخداد کانسار در منطقه مورد مطالعه می‌پردازد. ارزیابی انجام شده، این منطقه را برای اکتشافات بعدی مستعد ارزیابی می‌کند به گونه‌ای که انتظار می‌رود به احتمال 90 درصد حداقل 3 کانسار با تناژ حداقل 46700 تن، به احتمال 50 درصد حداقل 19 کانسار با تناژ حداقل 69400 تن و به احتمال 10 درصد حداقل 40 کانسار با تناژ حداقل 2140000 تن در این منطقه وجود داشته باشد. برای راستی آزمایی نتایج حاصله، با ترسیم منحنی لگاریتمی عیار- مساحت و نیز شاخص سینگولاریتی، جامعه زمینه و آنومالی برای عنصر کروم در منطقه مورد مطالعه به تفکیک مشخص شد. آنومالی‌های کروم در حاشیه شرقی افیولیت نایین، به تعداد حداقل سه آنومالی بارز قابل مشاهده است. این تعداد آنومالی حداقل تعداد کانسار محاسبه شده به وسیله روش ارزیابی سه بخشی را تایید می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Quantitative Assessment of Podiform Chromite Deposits, Based on Three-Part Assessment Method in Naeen’s Ophiolites

نویسندگان [English]

  • M. Esmaeili 1
  • S. Soltani-Mohammadi 2
  • S.A. Banitaba 3
1 Ph.D Student, Dept. of Mining Engineering, University of Kashan, Iran
2 Associate Professor, Dept. of Mining Engineering, University of Kashan, Iran
3 M.Sc, Dept. of Mining Engineering, University of Kashan, Iran
چکیده [English]

Chromite is one of the most used strategic metals. Among different types of Chromite deposits, Padiform Chromite is more considerable economically. On other hand, decision-making for mineral exploration investigation requires accurate estimation of the quality and quantity of new deposits. For estimation of the quality and quantity of deposits, quantitative mineral resource assessments are required. Quantitative mineral resource assessment is based on descriptive, density, and average grade-tonnage models. In this research, a three-part assessment method has been used to estimate podiform chromite deposits in Naeen’s Ophiolites. The three-Part assessment method is based on an inverse relationship between the permissive area for a specific deposit type and the number of deposits. Evaluation by the three-part assessment method shows that the understudy region is high potential. Results show a 50% chance of at least 19 deposits with at least 69400 metric tons of chromite & 10% chance of at least 40 deposits with at least 46700 tons of chromite existing in the understudy region. Geochemical anomalies have been used for validation. These anolmalies have been separated based on the concentration-area (C-A) and singularity index methods. At least three geochemical anomalies in the east margin of Naeen ophiolite were identified.

کلیدواژه‌ها [English]

  • Three-part assessments
  • Estimation of undiscovered deposits
  • Chromite Naeen
  1. Singer, D. A., Menzie, W. D., Sutphin, D. M., Mosier, D. L., and Bliss, J. D. (2001). “Mineral deposit density - an update”. U.S. Geological Survey Professional Paper 1640 A.  DOI: 10.3133/pp1640a.
  2. Singer, D. A., and Berger, V. I. (2007). “Mineral resource assessment methodologies deposit models and their application in mineral resource assessments”. Proceedings, Workshop on Deposit Modeling, Mineral Resource Assessment, and Sustainable Development U.S. Geological Survey, 1294(1): 71-78.
  3. Singer, D. A. (1993). “Basic concepts in three-part quantitative assessments of undiscovered mineral resources”. Nonrenewable Resources, 2(2): 69-81. DOI: 10.1007/BF02272804.
  4. Singer, D. A. (1994). “Conditional estimates of the number of podiform chromite deposits”. Nonrenewable Resources, 3(3): 200-204. DOI: 10.1007/BF02259045.
  5. Singer, D. A., Jaireth, S., and Roach, I. (2018). “A three-part quantitative assessment of undiscovered unconformity-related uranium deposits in the Pine Creek region of Australia”. Iaea Tecdoc Series, pp. 350.
  6. Singer, D. A., Berger, V. I., and Moring, B. C. (2008). “Porphyry copper deposits of the world: Database and grade and tonnage models”. Reston: US Department of the Interior, US Geological Survey, 2008-1155.
  7. Cox, D. P., and Singer, D. A. (1987). “Mineral deposit models”. U.S. Geological Survey, Bulletin 1693: 139-141.
  8. Mosier, D. L. and Page, N. J. (1988). “Descriptive and Grade-tonnage Models of Volcanogenic Manganese Deposits in Oceanic Environments A Modification”. Department of the Interior, US Geological Survey.
  9. Cox, D. P. Lindsey, D. A., Singer, D. A., and Diggles, M. F. (2007). “Sediment-hosted copper deposits of the world”.  Reston, VA, USA: US Department of the Interior, US Geological Survey.
  10. Bliss, J. D. (1992). “Grade-tonnage and other models for diamond kimberlite pipes”. Nonrenewable Resources, 1(3): 214-230.
  11. Bliss, J. D. (1992). “Developments in mineral deposit modeling”.  US Government Printing Office.
  12. Singer, D. A., and Menzie, W. D. (2010). “Quantitative mineral resource assessments: An integrated approach”. Oxford University Press.
  13. Wilkinson, B. H., and Kesler, S. E. (2007). “Tectonism and exhumation in convergent margin orogens Insights from ore deposits”. The Journal of Geology, 115(6): 611-627.
  14. Singer, D. A., and Menzie, W. D. (2007). “Map scale effects on estimating the number of undiscovered mineral deposits. In: Progress in Geomathematics, Springer, 271-283.
  15. Cunningham, C. G., Singer, D. A., Zappettini, E. O., Waldo, V. S., Celada, C. M., Quispe, J., Briskey, J. A., Sutphin, D. M., Mariano, G. M., Diaz, A., Portigliati, C., Berger, V. I., Carrasco, R., and Schulz, K. J. (2007). “A preliminary quantitative mineral resource assessment of undiscovered porphyry copper resources in the Andes Mountains of South America”. SEG Discovery, 1(71): 1-13. DOI: https://doi.org/10.5382/SEGnews.2007-71.fea.
  16. Allais, M. (1957). “Method of appraising economic prospects of mining exploration over large territories: Algerian Sahara case study”. The Institute for Operations Research and the Management Sciences, 3(4): 285-347. DOI: https://doi.org/10.1287/mnsc.3.4.285.
  17. Singer, D. A., Mosier, D. L., and Menzie, W. D. (1993). “Digital grade and tonnage data for 50 types of mineral deposits”. US Department of the Interior, US Geological Survey Reston, VA, USA.
  18. Cunningham, C. G., Zappettini, E. O., Waldo, V. S., Celada, C. M., Quispe, J., Singer, D. A., Briskey, J. A., Sutphin, D. M., Gajardo, M. M., Diaz, A., Portigliati, C., Berger, V. I., Carrasco, R., and Schulz, K. J. (2008). “Quantitative mineral resource assessment of copper, molybdenum, gold, and silver in undiscovered porphyry copper deposits in the Andes Mountains of South America”. U.S. Geological Survey Open-File Report 2008-1253, pp. 282.
  19. Mosier, D. L., Singer, D. A., Moring, B. C., and Galloway, J. P. (2012). “Podiform chromite deposits—database and grade and tonnage models”. US Geological Survey Scientific Investigations Report, 5157: 45.
  20. Singer, D. A., Berger, V. I., Menzie, W. D., and Berger, B. R. (2005). “Porphyry copper deposit density”. Economic Geology, 100(3): 491-514.
  21. شهاب پور، ج.؛ 1394؛ "زمین شناسی اقتصادی". انتشارات دانشگاه باهنرکرمان، کرمان.
  22. عرفانی، ح.؛ 1351؛ "مطالعه تیپ کانسارهای کرومیت ایران". نشریه دانشکده فنی تهران، شماره 24.
  23. Lippard, S. J. (1986). “The ophiolite of northern Oman”. Geological Society London Memoir, 11: 178.
  24. Engin, T., Balci, M., Sümer, Y., and Özkan, Y. Z. (1981). “General geological setting and the structural features of the Guleman peridotite unit and the chromite deposits (Elazigˇ, Eastern Turkey)”. Bulletin of the Mineral Research and Exploration Institute of Turkey, 95-96: 34-56.
  25. Afzal, P., Yusefi, M., Mirzaie, M., Ghadiri-Sufi, E., Ghasemzadeh, S., and Daneshvar Saein, L. (2019). “Delineation of podiform-type chromite mineralization using geochemical mineralization prospectivity index and staged factor analysis in Balvard area (SE Iran)”. Journal of Mining and Environment, 10(3):705-715.
  26. Tarrah, J., Abedpour, Z., Strauss, K., Schirmer, T., and Mengel, K. (2015). “Mineralogical and geochemical investigations of chromite ores from ophiolite complexes of SE Iran in terms of chrome spinel composition”. Iranian Journal of Earth Sciences, 7(2): 114-123.
  27. Panahi, S., Khakzad, A., and Afzal, P. (2021). “Analytical hierarchical prospectivity mapping using integration of exploratory data in the Anarak region, Central Iran”. Geopersia, 12(1): 53-68.
  28. Bagheri, H., Moore, F., and Alderton, D. H. M. (2007). “Cu–Ni–Co–As (U) mineralization in the Anarak area of central Iran”. Journal of Asian Earth Sciences, 29(5-6): 651-65.
  29. Akbari, D., and Safari, A. (2012). “Support Vector Machine for Target Detection in Hyperspectral Images”. Remote Sensing, II: 6135.
  30. شمسی پوردهکردی، ر.، صادقی، م.، غلامی فشارکی، ز.؛ 1390؛ "بررسی منشا کرومیت و عناصر گروه پلاتین در افیولیت شمال نائین". زمین شناسی اقتصادی، دوره سوم، شماره 2.
  31. Afzal, P., Mirzaeia, M., Yousefi M., Adiba, A., Khalajmasoumid, M., Zarifi, A. Z., Foster, P., and Yasrebib, A. B. (2016). “Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis”.  Journal of African Earth Sciences, 119: 139-149. DOI: https://doi.org/10.1016/j.jafrearsci.2016.03.009.
  32. Cheng, Q., and Agterberg, F. P. (1996). “Multifractal modeling and spatial statistics”. Mathematical Geosciences, 28(1): 1-16.
  33. Afzal, P., Yasrebi, A. B., Saein, L. D., and Panahi, S. (2017). “Prospecting of Ni mineralization based on geochemical exploration in Iran”.  Journal of Geochemical Exploration, 181: 294-304.
  34. Cheng, Q. (2006). “GIS-based multifractal anomaly analysis for prediction of mineralization and mineral deposits”. Development of GIS in Geosciences, GAC/MAC: 289-300.
  35. Cheng, Q. (2007). “Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China”. Ore Geology Reviews, 32(1-2): 314-324.
  36. Zuo, R., Wang, J., Chen, G., and Yang, M. (2015). “Identification of weak anomalies: A multifractal perspective”. Journal of Geochemical Exploration, 148: 12-24.
  37. Liu, Y., Xia, Q., and Carranza, E. J. M. (2019). “Integrating sequential indicator simulation and singularity analysis to analyze uncertainty of geochemical anomaly for exploration targeting of tungsten polymetallic mineralization, Nanling belt, South China”. Journal of Geochemical Exploration, 197: 143-158.