تخمین حجم توده معدنی منطقه ایله با تحلیل میدان مغناطیسی و وارون سازی داده گرانی کاذب بوسیله الگوریتم بهینه سازی ازدحام ذرات سراسری بهبودیافته

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه علوم زمین، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران

2 استادیار، گروه علوم زمین، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران

چکیده

در این مقاله، چشمه مولد بی‌هنجاری میدان مغناطیسی محدوده مطالعاتی در منطقه ایله شهرستان تایباد که از نظر وجود کانی‌های آهنی مورد توجه است، با استفاده از نرم‌افزار مدل ویژن مدل‌سازی شده و عمق توده مدفون با استفاده از روش‌های مرسوم اویلر دی کانولوشن و طیف توان انرژی تخمین زده می‌شود. همچنین الگوریتم بهینه‌سازی مبتنی بر جمعیت به نام الگوریتم بهینه‌سازی ازدحام ذرات سراسری بهبودیافته (IGPSO) تشریح می‌شود. کارآیی روش بهینه‌سازی ازدحام ذرات سراسری بهبودیافته با استفاده از داده گرانی مصنوعی آغشته به نوفه بررسی شد که نتایج، عملکرد قابل قبول روش یاد شده را نشان می‌دهد. با استفاده از این الگوریتم بهینه‌سازی، داده گرانی کاذب منطقه ایله، تجزیه و تحلیل شده و پارامترهای ساختاری توده مولد بی‌هنجاری که شامل عمق، شعاع، تباین چگالی، مختصات نقطه مبدا و فاکتور شکل است، تخمین زده می‌شود. بر اساس تحلیل انجام شده به وسیله IGPSO شکل توده مولد بی‌هنجاری کروی با یک شعاع 2/56 متر و تباین چگالی 93/1 گرم بر سانتی‌متر مکعب است. حفاری در محدوده مورد مطالعه عمق میانگین مرکز توده معدنی را در حدود 2/103 متر نشان می‌دهد. عمق‌ مرکز به دست آمده برای چشمه بی‌هنجاری از وارون‌سازی با استفاده از نرم‌افزار مدل ویژن و روش بهینه‌سازی ازدحام ذرات سراسری بهبود یافته به ترتیب 120 متر و 8/111 متر است که به ترتیب خطایی برابر 14% و 7/7% را نشان می‌دهد. حجم تقریبی توده زیرسطحی در حدود 104 × 74 مترمکعب برآورد شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimating the Mineral Mass Volume of the Ileh Region by Magnetic Field Analysis and Pseudo-Gravity Data Inversion Using the Improved Global Particle Swarm Optimization Algorithm

نویسندگان [English]

  • M. Heidari 1
  • M. Meshinchi Asl 2
  • M. Mehramuz 2
  • R. Heidari 2
1 Ph.D Student, Dept. of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Assistant Professor, Dept. of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

In the current research, the buried causative body of a magnetic field anomaly was modeled using Encom ModelVision software and its depth was estimated using deconvolution Euler and energy power spectrum methods. The magnetic data of Iileh region of Taybad city was used for modeling. In addition, an optimization algorithm was explained as the Improved Global Particle Swarm Optimization (IGPSO). The obtained results showed IGPSO is acceptably resistant to the corrupted synthetic gravity data by noise. Using this optimization algorithm, the pseudo-gravity data of Iileh region was analyzed to determine the structural parameters of the causative body of the anomaly such as depth, radius, density contrast, origin point coordinate and shape factor. The determined shape of the causative body of the anomaly was a sphere with a radius of 56.2 m and a density contrast of 1.93 gr/cm3. The estimated depths of the center of the sphere by Encom ModelVision software and IGPSO method were 120 m and 111.8 m, respectively. While the drilling results in this area shows an average depth of 103.2 m for the center of the iron mineral body. This indicates the introduced IGPSO method obtained better results.

کلیدواژه‌ها [English]

  • Iileh
  • Improved global particle swarm optimization algorithm
  • Magnetic field
  • Model vision
  • Pseudo-gravity
  1. Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., and Peirce, J. W. (2005). “The historical development of the magnetic method in exploration”. Geophysics, 70(6): 33-61.
  2. Abdelrahman, E. M., Soliman, K. S., El-Araby, T. M., Abo-Ezz, E. R., and Essa, K. S. (2009). “A least-squares standard deviation method to interpret magnetic anomalies due to thin dikes”. Near Surface Geophysics, 7: 41-46.
  3. Ekinci, Y. L., Balkaya, C. S., Eren, A., Kaya, M. A., and Lightfoot, C. S. (2014). “Geomagnetic and geoelectrical prospection for buried archaeological remains on the Upper City of Amorium, a Byzantine City in Midwestern Turkey”. Journal of Geophysics and Engineering, 11: 015012.
  4. Abubakar, R., Muxworthy, A. R., Sephton, M. A., Southern, P., Watson, J. S., and Fraser, A. J. (2015). “Formation of magnetic minerals at hydrocarbon-generation conditions”. Marine and Petroleum Geology, 68: 509-519.
  5. Ivakhnenkoa, O. P., Abirova, R., and Logvinenkoc, A. (2015). “New method for characterisation of petroleum reservoir fluid mineral deposits using magnetic analysis”. Energy Procedia, 76: 454-462.
  6. Farquharson, C. G., and Craven, J. A. (2009). “Three-dimensional inversion of magnetotelluric data for mineral exploration: An example from the McArthur River uranium deposit, Saskatchewan, Canada”. Journal of Applied Geophysics, 68: 450-458.
  7. Abedi, M., Gholami, A., and Norouzi, G. H. (2013). “A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran”. Computers and Geosciences, 52: 269-280.
  8. Abdelrahman, E. M., Essa, K. S., El-Araby, T., and Abo-Ezz, E. R. (2016). “Depth and shape solutions from second moving average residual magnetic anomalies”. Exploration Geophysics, 47: 58-66.
  9. Eshaghzadeh, A., and Sahebari, S. S. (2020). Multivariable teaching-learning-based optimization (MTLBO) algorithm for estimating the structural parameters of the buried mass by magnetic data”. Geofizika, 37(2): 213-235.
  10. Eshaghzadeh, A., Sahebari, S. S., and Kalantari, R. A. (2020). Determination of sheet-like geological structures parameters using Marquardt inversion of the magnetic data”. Indian Journal of Geo-Marine Sciences, 49: 450-457.
  11. Bektas, O¨., Ravat, D., Bu¨yu¨ksarac¸, A., Bilim, F., and Ates¸, A. (2007). “Regional geothermal characterisation of East Anatolia from aeromagnetic, heat flow and gravity data”. Pure and Applied Geophysics, 164: 976-986.
  12. Nyabeze, P. K., and Gwavava, O. (2016). “Investigating heat and magnetic source depths in the Soutpansberg Basin, South Africa: Exploring the Soutpansberg Basin Geothermal Field”. Geothermal Energy, 4(8): 1-22.
  13. Gu¨ndog˘du, N. Y., Candansayar, M. E., and Genc¸, E. (2017). “Rescue archaeology application: Investigation of Kuriki mound archaeological area (Batman, SE Turkey) by using direct current resistivity and magnetic methods”. Journal of Environmental & Engineering Geophysics (JEEG), 22(2): 177-189.
  14. Al-Garni, M. A. (2011). “Magnetic and DC resistivity investigation for groundwater in a complex subsurface terrain”. Arabian Journal of Geosciences, 4: 385-400.
  15. Araffa, S. A. S., Helaly, A. S., Khozium, A., Lala, A. M. S., Soliman, S. A., and Hassan, N. M. (2015). “Delineating groundwater and subsurface structures by using 2D resistivity, gravity and 3D magnetic data interpretation around Cairo-Belbies Desert road, Egypt”. NRIAG Journal of Astronomy and Geophysics, 4: 134-146.
  16. Boschetti, F., Denith, M. C., and List, R. D. (1997). “Inversion of potential field data by genetic algorithms”. Geophysical Prospecting, 45: 461-478.
  17. Kaftan, I. (2017). “Interpretation of magnetic anomalies using a genetic algorithm”. Acta Geophysica, 65: 627-634.
  18. van den Bergh, F., and Engelbrecht, A. P. (2004). “A Cooperative approach to particle swarm optimization”. IEEE Transactions on Evolutionary Computation, 8: 225-239.
  19. Essa, K. S., and Elhussein, M. (2017b). “2D dipping dike magnetic data interpretation using a robust particle swarm optimization”. Geoscientific Instrumentation, Methods and Data Systems, Discuss.
  20. Eshaghzadeh, A., and Sahebari, S. S. (2020). Application of PSO Algorithm based on the mean value of maximum frequency distribution for 2-D inverse modeling of gravity data due to a finite vertical cylinder shape”. Quaderni di Geofisica, 162: 1-22.
  21. Eshaghzadeh, A., and Hajian, A. (2021). 2-D gravity inverse modelling of anticlinal structure using improved particle swarm optimization (IPSO)”. Arabian Journal of Geosciences, 14: 1378.
  22. Fathi, M., Alimoradi, A., and Hemati, H. (2021). “Optimizing Extreme Learning Machine Algorithm using Particle Swarm Optimization to Estimate Iron Ore Grade”. Journal of Mining and Environment (JME), 2: 397-411
  23. Ekinci, Y. L., Balkaya, C¸., Go¨ktu¨rkler, G., and Turan, S. (2016). “Model parameter estimations from residual gravity anomalies due to simple-shaped sources using differential evolution algorithm”. Journal of Applied Geophysics, 129: 133-147.
  24. Balkaya, C., Ekinci, Y. L., Go¨ktu¨rkler, G., and Turan, S. (2017). “3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm”. Journal of Applied Geophysics, 136: 372-386.
  25. Biswas, A. (2015). “Interpretation of residual gravity anomaly caused by a simple shaped body using very fast simulated annealing global optimization”. Geoscience Frontiers, 6: 875-893.
  26. Al-Garni, M. A. (2013).  “Inversion of residual gravity anomalies using neural network”. Arabian Journal of Geosciences, 6: 1509-1516.
  27. Eshaghzadeh, A., and Hajian, A. (2018). “2D inverse modeling of residual gravity anomalies from Simple geometric shapes using Modular Feed-forward Neural Network”. Annals of Geophysics, 61: SE115.
  28. Eshaghzadeh, A., Sahebari, S. S., and Kalantari, R. A. (2021). “2-D Anticlinal Structure Modeling Using Feed-Forward Neural Network (FNN) Inversion of Profile Gravity Data: A Case Study from Iran”. Journal of the Earth and Space Physics, 46: 79-91.
  29. Colorni, A., Dorigo, M., and Maniezzo, V. (1991). “Distributed optimization by ant colonies”. In Proceedings of the 1st European Conference on Artificial Life, 134-142.
  30. Srivastava, S., Datta, D., Agarwal, B. N. P., and Mehta, S. (2014). “Applications of ant colony optimization in determination of source parameters from total gradient of potential fields”. Near Surface Geophysics, 12: 373-389.
  31. Bresco, M., Raiconi, G., Barone, F., DeRosa, R., and Milano, L. (2005). “Genetic approach helps to speed classical Price algorithm for global optimization”. Soft Computing, 9: 525-535.
  32. Di Maio, R., Rani, P., Piegari, E., and Milano, L. (2016). “Selfpotential data inversion through a genetic-price algorithm”. Computers and Geosciences, 94: 86-95.
  33. Eshaghzadeh, A., and Hajian, A. (2020). “Multivariable Modified Teaching Learning Based Optimization (MM-TLBO) Algorithm for Inverse Modeling of Residual Gravity Anomaly Generated by Simple Geometric Shapes”. Journal of Environmental & Engineering Geophysics, 25(4): 463-476.
  34. Ku, C. C., and Sharp, J. A. (1983). “Werner deconvolution for automated magnetic interpretation and its refinement using Marquardt’s inverse modeling”. Geophysics, 48: 754-774.
  35. Thompson, D. T. (1982). “EULDPH—A new technique for making computer-assisted depth estimates from magnetic data”. Geophysics, 47: 31-37.
  36. Abdelrahman, E. M., Abo-ezz, E. R., and Essa, K. S. (2012). “Parametric inversion of residual magnetic anomalies due to simple geometric bodies”. Exploration Geophysics, 43: 178-189.
  37. Pilkington, M., and Keating, P. (2006). “The relationship between local wavenumber and analytic signal in magnetic interpretation”. Geophysics, 71: L1-L3.
  38. Abdelrahman, E. M., El-Araby, H. M., El-Araby, T. M., and Essa, K. S. (2003). “A least-squares minimization approach to depth determination from magnetic data”. Pure and Applied Geophysics, 160: 1259-1271.
  39. Essa, K. S., and Elhussein, M. (2017a). “A new approach for the interpretation of magnetic data by a 2-D dipping dike”. Journal of Applied Geophysics, 136: 431-443.
  40. Eshaghzadeh, A., Sahebari, S. S., and Kalantari, R. A. (2019). “Inverse modeling of gravity field data due to finite vertical cylinder using modular neural network and least-squares standard deviation method”. Iranian Journal of Earth Sciences, 11(4): 267-276.
  41. Tlas, M., and Asfahani, J. (2011). “Fair function minimization for interpretation of magnetic anomalies due to thin dikes, sphere sand faults”. Journal of Applied Geophysics, 75: 237-243.
  42. Fedi, M. (2007). “DEXP: A fast method to determine the depth and the structural index of potential fields sources”. Geophysics, 72: I1-I11.
  43. Abdelrahman, E. M., Abo-Ezz, E. R., Essa, K. S., El-Araby, T. M., and Soliman, K. S. (2007). “A new least-squares minimization approach to depth and shape determination from magnetic data”. Geophysical Prospecting, 55: 433-446.
  44. Abo-Ezz, E. R., and Essa, K. S. (2016). “A least-squares minimization approach for model parameters estimate by using a new magnetic anomaly formula”. Pure and Applied Geophysics, 173: 1265-1278.
  45. Eshaghzadeh, A., Dehghanpour, A., and Sahebari, S. S. (2019). “Marquardt inverse modeling of the residual gravity anomalies due to simple geometric structures: A case study of chromite deposit”. Contributions to Geophysics and Geodesy, 49(2): 153-180.
  46. Tlas, M., and Asfahani, J. (2015). “The simplex algorithm for best estimate of magnetic parameters related to simple geometric shaped structures”. Mathematical Geosciences, 47: 301-316.
  47. Eshaghzadeh, A., Sahebari, S. S., and Kalantari, R. A. (2020). Determination of sheet-like geological structures parameters using Marquardt inversion of the magnetic data”. Indian Journal of Geo-Marine Sciences, 49: 450-457.
  48. Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization”. IEEE International Conference on Neural Networks, 4: 1942-1948.
  49. Monteiro Santos, F. A. (2010). “Inversion of self-potential of idealized bodies’ anomalies using particle swarm optimization”. Computers & Geosciences, 36: 1185-1190.
  50. Toushmalani, R. (2013a). “Comparison result of inversion of gravity data of a fault by particle swarm optimization and Levenberg–Marquardt methods”. SpringerPlus, 2: 462.
  51. Toushmalani, R. (2013b). “Gravity inversion of a fault by Particle Swarm Optimization (PSO)”. SpringerPlus, 2: 315.
  52. Pallero, J. L. G., Fernández-Martínez, J. L., Bonvalot, S., and Fudym, O. (2015). “Gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization”. Journal of Applied Geophysics, 116: 180-191.
  53. Singh, A., and Biswas, A. (2016). “Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries”. Natural Resources Research, 25: 297-314.
  54. Singh, K. K., and Singh, U. K. (2017). “Application of particle swarm optimization for gravity inversion of 2.5-D sedimentary basins using variable density contrast”. Geoscientific Instrumentation, Methods and Data Systems, 6: 193-198.
  55. Roshan, R., and Singh, U. K. (2017). “Inversion of residual gravity anomalies using tuned PSO”. Geoscientific Instrumentation, Methods and Data Systems, 6: 71-79.
  56. Essa, K. S., and Elhussein, M. (2018). “Gravity Data Interpretation Using Different New Algorithms: A Comparative Study. Gravity-Geoscience Applications, Industrial Technology and Quantum Aspect”. Licensee InTech. DOI: 10.5772/intechopen.71086.
  57. Essa, K. S., and Elhussein, M. (2018). “PSO (Particle Swarm Optimization) for Interpretation of Magnetic Anomalies Caused by Simple Geometrical Structures”. Pure and Applied Geophysics, 175: 3539-3553.
  58. Sweilam, N. H., El-Metwally, K., and Abdelazeem, M. (2007). “Selfpotential signal inversion to simple polarized bodies using the particle swarm optimization method: A visibility study”. Journal of Applied Geophysics, 6: 195-208.
  59. Abdelrahman, E. M., Bayoumi, A. I., Abdelhady, Y. E., Gobash, M. M., and EL-Araby, H. M. (1989). “Gravity interpretation using correlation factors between successive leastsquares residual anomalies”. Geophysics, 54: 1614-1621.
  60. Blakely, R. J. (1995). “Potential Theory in Gravity and Magnetic Applications”. Cambridge University Press.