کاربرد مدل فرکتال غلظت-مساحت در تمایز زون های دگرسانی هیدروترمال کمان ماگمایی سنوزوئیک کرمان با استفاده از تصاویر ASTER

نوع مقاله : علمی-پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی معدن، دانشگاه صنعتی اراک، اراک

2 دانشجوی دکترا، دانشکده مهندسی معدن، دانشگاه صنعتی اراک، اراک

چکیده

در این تحقیق با ترکیب روش‌های آنالیز مولفه‌های اصلی و فرکتال غلظت- مساحت، زون‌های دگرسانی هیدروترمال موجود در منطقه تفکیک و عملکرد روش به صورت نقطه‌ای ارزیابی شده است. آنالیز مولفه‌های اصلی الگوریتم توانمندی برای جدایش زون‌های دگرسانی با استفاده از تصاویر ماهواره‌ای است که در این آنالیز استفاده شده است ولی جدایش دقیق زون‌های دگرسانی از یکدیگر هدف مورد نظر این تحقیق است که برای این منظور مدل فرکتال غلظت- مساحت با آنالیز مولفه‌های اصلی تلفیق شد تا تمایز نقطه‌ای دگرسانی‌ها بررسی شود. نتایج به دست آمده با استفاده از ماتریس درهم آمیختگی، تابع خطای حذف، تابع خطای انجام و پارامتر صحت کل مورد ارزیابی قرار گرفت. تابع خطای حذف بر روی نتایج این تحقیق نشان می‌دهد که مدل ترکیبی استفاده شده خطای 16/54 درصد برای جدایش زون آرژیلیک دارد و این بدان معنی است که 16/54 درصد از پیکسل‌هایی که متعلق به زون آرژیلیک بوده‌اند به اشتباه در زون‌های دیگر طبقه‌بندی شده‌اند که بیشترین سهم متعلق به زون فیلیک است. نتایج بیان می‌کند مدل فرکتال غلظت- مساحت توانسته است هر کدام از دگرسانی‌های فیلیک، آرژیلیک و پروپیلیتیک را در منطقه شناسایی کند، اما به دلیل اینکه کانی‌های شاخص دگرسانی فیلیک و آرژیلیک اثر انگشت طیفی مشابهی دارند، مدل فرکتال غلظت- مساحت قادر به تفکیک دقیق این دو دگرسانی نبوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Concentration-Area Fractal Model for Separating Hydrothermal Alteration Zones of Kerman Cenozoic Magmatic Arc (KCMA) Using ASTER Images Data

نویسندگان [English]

  • S. Mojeddifar 1
  • N. Ostadmahdi Aragh 2
1 Assistant Professor, Dept. of Mining Engineering, Arak University of Technology, Arak, Iran
2 Ph.D Student, Dept. of Mining Engineering, Arak University of Technology, Arak, Iran
چکیده [English]

Separating hydrothermal alteration zones is a main challenge in remote sensing science. The results showed that application of conventional methods based on spectral properties could not exactly separate hydrothermal alterations. Therefore, this research attempted to identify hydrothermal alteration zones in the study area by combining principal component analysis and concentration-area fractal model. The developed model was evaluated by confusion matrix, commission and omission error and total accuracy. The commission and omission error of phyllic zone is 4.51 and 9.13 percent, respectively, and the omission error of argillic zone is equal to 54.16 percent. The results indicated that concentration-area fractal model is able to identify phyllic, argillic and propylitic zones in the study area. Because of the same spectral signature of phyllic and argillic minerals, the concentration-area fractal model could not exactly discriminate these two alteration zones.

کلیدواژه‌ها [English]

  • Hydrothermal alteration
  • Principal component analysis
  • Concentration area
  1. Ahmadfaraj, M., Mirmohammadi, M., and Afzal, P. 2016. “Application of fractal modeling and PCA method for hydrothermal alteration mapping in the Saveh area (Central Iran) based on ASTER multispectral data”. International Journal of Mining and Geo-Engineering, 50(1): 37-48.
  2. Shahriari, H., Ranjbar, H., and Honarmand, M. (2013). “Image segmentation for Hydrothermal Alteration Mapping Using PCA and Concentration- Area Fractal Model”. Natural Resources Research, 22: 191-206.
  3. Masoumi, M., Honarmand, M., and Salimi, A. (2021). “Integration of concentration-area fractal model and relative absorption band depth method for mapping hydrothermal alterations using ASTER data”. Remote Sensing Applications: Society and Environment, 23: 100519.‏
  4. Qiu, J. T., Zhang, C., and Hu, X. (2015). “Integration of concentration-area fractal modeling and spectral angle mapper for ferric iron alteration mapping and uranium exploration in the Xiemisitan Area, NW China”. Remote Sensing, 7(10): 13878-13894.‏
  5. Shahriari, H., Honarmand, M., and Ranjbar, H. (2015). “Comparison of multi-temporal ASTER images for hydrothermal alteration mapping using a fractal-aided SAM method”. International Journal of Remote Sensing, 36(5): 1271-1289.‏
  6. Afzal, P., Alghalandis, Y. F., Khakzad, A., Moarefvand, P., and Omran, N. R. (2011). “Delineation of mineralization zones in porphyry Cu deposits by fractal concentration– volume modeling”.  Journal of Geochemical Exploration, 108(3): 220-232.‏
  7. Dimitrijevic, M. D. (1973). “Geology of the Kerman region. Geological Survey of Iran publication,  Tehran”. Rep. 52, pp. 334.
  8. Cheng, Q., Agterberg, F. P., and Ballantyne, S. B. (1994). “The separation of geochemical anomalies from background by fractal methods”. Journal of Geochemical Exploration, 51(2): 109-130.
  9. Cheng, Q., Agterberg, F. P., and Bonham-Carter, G. F. A. (1996). “Special analysis method for geochemical anomaly separation”.  Journal of Geochemical Exploration, 56(2): 183- 195.
  10. Cheng, Q., Bonham-Carter, G. F. A., Hall, G. E. M., and Bajc, A. (1997). “Statistical study of trace elements in the soluble organic and amorphous Fe-Mn phases of surficial sediments, Sudbury Basian, 1, Multivariate and spatial analysis”.  Journal of Geochemical Exploration, 59(1): 27-46.
  11. Sim, B. L., Agterberg, F. P., and Beaudry, C. (1998, October). “Determining the cutoff between background and anomalous metal concentration in lake sediments for the Frotet area, Quebec, using multifractal methods”. In: Proceedings of International Association for Mathematical Geology Meeting, 2: 612-617.
  12. Goncalves, M. A., Vairinho, M., and Oliveira, V. (1998). “Study of geochemical anomalies in Mombeja area using multifractal methodology and geostatistics”. Proceedings of International Association for Mathematical Geology Meeting, 6-9 October, Ischia, Italy, 2: 590-595.
  13. Cheng, Q., Xu, Y., and Grunsky, E. (1999). “Integrated spatial and spectrum analysis for geochemical anomaly separation, In S. J. Lippard , A. Naess, and R. Sinding –Larsen(Eds), Proceedings of International Association for Mathematical Geology Meeting”. Trondheim, Norway, I: 87-92.
  14. Cheng, Q., Xu, Y., and Grunsky, E. (2000). “Integrated spatial and spectrum analysis for geochemical anomaly separation”. Natural Resources Research, 9(1): 43-52.
  15. Cheng, Q., and Li, Q. (2002). “A fractal concentration-area method for assigning a color palette for image representation”. Computers and Geosciences, 28(4): 567-575.
  16. Mojeddifar, S., Ranjbar, H., Nezamabadi-pour, H. (2013). “Adaptive NeuroFuzzy Inference System application for hydrothermal alteration mapping using ASTER data”. Journal of Mining & Environment, 4(2): 83-96.
  17. Honarmand, M., Ranjbar, H., and Shahabpour, J. (2011). “Application of Spectral Analysis in Mapping Hydrothermal Alteration of the Northwestern Part of the Kerman Cenozoic Magmatic Arc, Iran”. Journal of Sciences, 22: 221-238.
  18. Congalton, R. G., and Green, K. (2009). “Assessing the Accuracy of Remotely Sensed Data– Principles and Practices”. 2nd Ed., Lewis Publishers, Boca Raton.