انتخاب راهبرد مناسب صنایع نسل چهارم برای اجرای روش های هوشمند در حوزه مهندسی معدن

نوع مقاله : علمی-پژوهشی

نویسندگان

1 استادیار، گروه مهندسی معدن، دانشکده محیط زیست، دانشگاه صنعتی ارومیه، ارومیه

2 کارشناسی ارشد، دانشکده مهندسی معدن، دانشگاه تربیت مدرس، تهران

3 دانشیار، گروه مهندسی صنایع، دانشکده فناوری‌های صنعتی، دانشگاه صنعتی ارومیه، ارومیه

چکیده

به کارگیری فن‌آوری‌های نوین، تاثیر بسیار مهمی در افزایش کارآیی و بهبود بهره‌وری عوامل تولید در صنایع مختلف به ویژه معادن دارد، اما این مهم نیازمند انتخاب، اتخاذ و پیاده‌سازی راهبردهای صحیح و موثر است و هرگونه راهبرد نادرست ممکن است شرکت‌ها و بنگاه‌های اقتصادی را با اتلاف منابع مواجه سازد. بر همین اساس با رویکرد حل یک مساله تصمیم‌گیری چند معیاره، هدف اصلی این پژوهش تعیین راهبردهای جذاب استفاده از فن‌آوری‌های به اصطلاح نسل چهارم (صنعت 0/4) در بخش معدن ایران است. از این رو این تحقیق با تلفیق تئوری اعداد Z و تکنیک VIKOR فازی وزن‌دهی شده با رویکرد فازی اثرات علت و معلولی، یک روش جدید برای ارزیابی و اولویت‌بندی راهبردهای هوشمند‌سازی معادن پیشنهاد می‌کند. در این راستا پرسشنامه‌هایی حاوی پنج راهبرد (گزینه) و 11 معیار طراحی و به تیمی متشکل از هشت متخصص ارایه شد. نتایج به ‌دست آمده از اولویت‌بندی مدل ترکیبی پیشنهادی تایید می‌کند که راهبرد "ارایه مشوق‌‌های دولتی به معادن برای استفاده معادن از فن‌آوری‌‌های به‌روز" مناسب‌ترین گزینه برای اجرای صنایع نسل چهارم در معادن بزگ مقیاس ایران است. همچنین در این مطالعه، یک تجزیه و تحلیل حساسیت پارامتری برای تعیین اثربخشی راهبردهای ارایه شده انجام شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Choosing the Appropriate Strategy of 4.0 Industries for the Implementation of Intelligent Methods in Mining Engineering

نویسندگان [English]

  • R. Poormirzaee 1
  • S.Sh. Hosseini 2
  • R. Taghizadeh 3
1 Assistant Professor, Dept. of Mining Engineering, Urmia University of Technology, Urmia, Iran
2 M.Sc, Dept. of Mining Engineering, Tarbiat Modares University, Tehran, Iran
3 Associate Professor, Dept. of Engineering, Urmia University of Technology, Urmia, Iran
چکیده [English]

The application of new technologies has a significant effect on increasing the efficiency and improving the productivity of production factors in various industries, such as the mining industry. This requires implementing correct and practical strategies, and any incorrect procedure can cause companies and businesses to waste resources. Accordingly, the main aim of this study is to determine attractive strategies for the use of so-called fourth-generation technologies (industry 4.0) in the mining sector of Iran. To do this, a multi-criteria decision-making (MCDM) problem was employed. Therefore, this study presents a new method for evaluating and prioritizing smart mine strategies using a combination of Z-number theory and fuzzy weighted VIKOR technique with a fuzzy cognitive map (FCM). In this regard, questionnaires containing five strategies (options) and 11 criteria were designed and presented to a team of eight experts. The results obtained from the prioritization of the proposed hybrid model confirm that the strategy of "provision of government incentives to mines to use up-to-date technologies" is the most appropriate alternative for implementing industries 4.0 in large-scale mines in Iran. Furthermore, a parametric sensitivity analysis was performed to determine the effectiveness of the proposed strategies. Results showed that the proposed strategy is a fixed mechanism for ranking smart mining engineering strategies. Meanwhile, the weight of the strategy does not affect their ranking.

کلیدواژه‌ها [English]

  • Smart mining
  • Industry 4.0
  • Z-number theory
  • Fuzzy cognitive map
  1. Thatcher, M. E., and Oliver, J. R. (2001). “The impact of technology investments on a firm’s production efficiency, product quality, and productivity”. Journal of Management Information Systems, 18(2): 17-45. DOI: https://doi.org/10.1080/07421222.2001.11045685.
  2. پورمیرزائی، ر.؛ 1396؛ "بررسی نقش صنعت معدنکاری و منابع معدنی در توسعه پایدار کشور". نشریه مهندسی منابع معدنی، دوره دوم، شماره 3 ،ص 12-1.
  3. Sishi, M., and Telukdarie, A. (2020). “Implementation of Industry 4.0 technologies in the mining industry-a case study”. International Journal of Mining and Mineral Engineering, 11(1): 1-22.
  4. Lu, Y. (2017). “Industry 4.0: A survey on technologies, applications and open research issues”. Journal of Industrial Information Integration, 6,: 1-10.
  5. Vaidya, S., Ambad, P., and Bhosle, S. (2018). “Industry 4.0–a glimpse”. Procedia Manufacturing, 20: 233-238.
  6. Özdağoğlu, A., Özdağoğlu, G., Topoyan, M., and Damar, M. (2020). “A predictive filtering approach for clarifying bibliometric datasets: an example on the research articles related to industry 4.0”. Technology Analysis and Strategic Management, 32(2): 158-174.
  7. Wu, H. W., and Gillies, A. D. S. (2005). “Real-time airflow monitoring and control within the mine production system”. In Eighth International Mine Ventilation Congress, 383-389.
  8. Bai, M., Zhao, X., Hou, Z. G., and Tan, M. (2007). “A wireless sensor network used in coal mines”. In 2007 IEEE International Conference on Networking, Sensing and Control, 319-323.
  9. Niu, X., Huang, X., Zhao, Z., Zhang, Y., Huang, C., and Cui, L. (2007). “The design and evaluation of a wireless sensor network for mine safety monitoring”. In IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference, 1291-1295. IEEE.
  10. Li, M., and Liu, Y. (2009). “Underground coal mine monitoring with wireless sensor networks”. ACM Transactions on Sensor Networks (TOSN), 5(2): 1-29.
  11. Liu, Z., Li, C., Wu, D., Dai, W., Geng, S., and Ding, Q. (2010). “A wireless sensor network based personnel positioning scheme in coal mines with blind areas”. Sensors, 10(11): 9891-9918.
  12. Bo, C., Peng, Z., Da, Z., and Junliang, C. (2012). “The complex alarming event detecting and disposal processing approach for coal mine safety using wireless sensor network”. International Journal of Distributed Sensor Networks, 8(11): 280576.
  13. Moridi, M. A., Kawamura, Y., Sharifzadeh, M., Chanda, E. K., and Jang, H. (2014). “An investigation of underground monitoring and communication system based on radio waves attenuation using ZigBee”. Tunnelling and Underground Space Technology, 43: 362-369.
  14. Mahdavipour, O., Mueller-Sim, T., Fahimi, D., Croshere, S., Pillatsch, P., Merukh, J., Zegna Baruffa, V., Sabino, J., Tran, K., Alanis, G., Solomon, P., Wright, P., White, R. M., Gundel, L., and Paprotny, I. (2015, November). “Wireless sensors for automated control of total incombustible content (TIC) of dust deposited in underground coal mines”. IEEE SENSORS, Busan, Korea (South), 1-4. DOI: 10.1109/ICSENS.2015.7370353.
  15. Cheng, B., Cheng, X., and Chen, J. (2015). “Lightweight monitoring and control system for coal mine safety using REST style”. ISA Transactions, 54: 229-239.
  16. Zhou, G., Zhu, Z., Zhang, P., and Li, W. (2016). “Node deployment of band-type wireless sensor network for underground coalmine tunnel”. Computer Communications, 81: 43-51.
  17. Garriga, M., Mateos, C., Flores, A., Cechich, A., and Zunino, A. (2016). “RESTful service composition at a glance: A survey”. Journal of Network and Computer Applications, 60: 32-53.
  18. Ang, J. H., Goh, C., Saldivar, A. A. F., and Li, Y. (2017). “Energy-efficient through-life smart design, manufacturing and operation of ships in an industry 4.0 environment”. Energies, 10(5): 610.
  19. Moktadir, M. A., Ali, S. M., Kusi-Sarpong, S., and Shaikh, M. A. A. (2018). “Assessing challenges for implementing Industry 4.0: Implications for process safety and environmental protection”. Process Safety and Environmental Protection, 117: 730-741.
  20. Büyüközkan, G., Feyzioğlu, O., and Havle, C. A. (2019, July). “Analysis of success factors in aviation 4.0 using integrated intuitionistic fuzzy MCDM methods”. In International Conference on Intelligent and Fuzzy Systems, Springer, Cham, 598-606.
  21. Bányai, T., Tamás, P., Illés, B., Stankevičiūtė, Ž., and Bányai, Á. (2019). “Optimization of municipal waste collection routing: Impact of industry 4.0 technologies on environmental awareness and sustainability”. International Journal of Environmental Research and Public Health, 16(4): 634.
  22. Li, Y., Dai, J., and Cui, L. (2020). “The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model”. International Journal of Production Economics, 229: 107777.
  23. Nara, E. O. B., da Costa, M. B., Baierle, I. C., Schaefer, J. L., Benitez, G. B., do Santos, L. M. A. L., and Benitez, L. B. (2021). “Expected impact of industry 4.0 technologies on sustainable development: A study in the context of Brazil’s plastic industry”. Sustainable Production and Consumption, 25: 102-122.
  24. Bakhtavar, E., Aghayarloo, R., Yousefi, S., Hewage, K., and Sadiq, R. (2019). “Renewable energy based mine reclamation strategy: a hybrid fuzzy-based network analysis”. Journal of Cleaner Production, 230: 253-263.
  25. Wang, T. C., and Chang, T. H. (2005, April). “Fuzzy VIKOR as a resolution for multicriteria group decision-making”. In The 11th International Conference on Industrial Engineering and Engineering Management, Paris, France: Atlantis Press, 352-356.
  26. Shemshadi, A., Shirazi, H., Toreihi, M., and Tarokh, M. J. (2011). “A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting”. Expert Systems with Applications, 38(10): 12160-12167.
  27. Yücenur, G. N., and Demirel, N. Ç. (2012). “Group decision making process for insurance company selection problem with extended VIKOR method under fuzzy environment”. Expert Systems with Applications, 39(3): 3702-3707.
  28. Liu, H. C., Wu, J., and Li, P. (2013). “Assessment of health-care waste disposal methods using a VIKOR-based fuzzy multi-criteria decision making method”. Waste Management, 33(12): 2744-2751.
  29. Yang, Y. P. O., Shieh, H. M., and Tzeng, G. H. (2013). “A VIKOR technique based on DEMATEL and ANP for information security risk control assessment”. Information Sciences, 232: 482-500.
  30. Kahraman, C., Süder, A., and Kaya, İ. (2014). “Fuzzy multicriteria evaluation of health research investments”. Technological and Economic Development of Economy, 20(2): 210-226.
  31. Salimi, A. H., Noori, A., Bonakdari, H., Masoompour Samakosh, J., Sharifi, E., Hassanvand, M., ... and Agharazi, M. (2020). “Exploring the role of advertising types on improving the water consumption behavior: An application of integrated fuzzy AHP and fuzzy VIKOR method”. Sustainability, 12(3): 1232.
  32. Rathore, R., Thakkar, J. J., and Jha, J. K. (2020). “Evaluation of risks in foodgrains supply chain using failure mode effect analysis and fuzzy VIKOR”. International Journal of Quality and Reliability Management. DOI: 10.1108/IJQRM-02-2019-0070.
  33. Bahadori, M., Hosseini, S. M., Teymourzadeh, E., Ravangard, R., Raadabadi, M., and Alimohammadzadeh, K. (2020). “A supplier selection model for hospitals using a combination of artificial neural network and fuzzy VIKOR”. International Journal of Healthcare Management, 13(4): 286-294.
  34. Ayouni, S., Menzli, L. J., Hajjej, F., Maddeh, M., and Al-Otaibi, S. (2021). “Fuzzy Vikor application for learning management systems evaluation in higher education”. International Journal of Information and Communication Technology Education (IJICTE), 17(2): 17-35.
  35. Zadeh, L. A. (1965). “Fuzzy sets”. Information and Control, 8(3): 338-353.
  36. Chen, S. M. (1994). “Fuzzy system reliability analysis using fuzzy number arithmetic operations”. Fuzzy Sets and Systems, 64(1): 31-38.
  37. Papageorgiou, E. I., and Salmeron, J. L. (2014). “Methods and algorithms for fuzzy cognitive map-based modeling”. In Fuzzy Cognitive Maps for Applied Sciences and Engineering, Springer, Berlin, Heidelberg, 1-28.
  38. Kosko, B. (1986). “Fuzzy cognitive maps”. International Journal of Man-Machine Studies, 24(1): 65-75.
  39. Papageorgiou, E. I. (2011). “Learning algorithms for fuzzy cognitive maps—a review study”. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(2): 150-163.
  40. Papageorgiou, E. I., Stylios, C., and Groumpos, P. P. (2006). “Unsupervised learning techniques for fine-tuning fuzzy cognitive map causal links”. International Journal of Human-Computer Studies, 64(8): 727-743.
  41. Stylios, C. D., and Groumpos, P. P. (2000). “Fuzzy cognitive maps in modeling supervisory control systems”. Journal of Intelligent and Fuzzy Systems, 8(1): 83-98.
  42. Bakhtavar, E., Hosseini, S., Hewage, K., and Sadiq, R. (2021). “Green blasting policy: simultaneous forecast of vertical and horizontal distribution of dust emissions using artificial causality-weighted neural network”. Journal of Cleaner Production, 283: 124562.
  43. Kahraman, C. (Ed.). (2008). “Fuzzy multi-criteria decision making: theory and applications with recent developments” (Vol. 16). Springer Science and Business Media.
  44. Opricovic, S. (1998). “Multicriteria optimization of civil engineering systems”. Faculty of Civil Engineering, Belgrade, 2(1): 5-21.
  45. Afful‐Dadzie, E., Nabareseh, S., Oplatková, Z. K., and Klímek, P. (2016). “Model for assessing quality of online health information: A fuzzy VIKOR based method”. Journal of Multi‐Criteria Decision Analysis, 23(1-2): 49-62.
  46. Chou, C. C. (2003). “The canonical representation of multiplication operation on triangular fuzzy numbers”. Computers and Mathematics with Applications, 45(10-11): 1601-1610.
  47. Chang, T. H. (2014). “Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan”. Information Sciences, 271: 196-212.
  48. Opricovic, S. (2011). “Fuzzy VIKOR with an application to water resources planning”. Expert Systems with Applications, 38(10): 12983-12990.
  49. Zadeh, L. A. (2011). “A note on Z-numbers”. Information Sciences, 181(14): 2923-2932.
  50. Azadeh, A., and Kokabi, R. (2016). “Z-number DEA: A new possibilistic DEA in the context of Z-numbers”. Advanced Engineering Informatics, 30(3): 604-617.
  51. Liu, H. C., You, J. X., You, X. Y., and Shan, M. M. (2015). “A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method”. Applied Soft Computing, 28: 579-588.
  52. Das, S., Dhalmahapatra, K., and Maiti, J. (2020). “Z-number integrated weighted VIKOR technique for hazard prioritization and its application in virtual prototype based EOT crane operations”. Applied Soft Computing, 94: 106419.