تهیه و خواص سنجی کلینوپتیلولیت آغشته به نانوذرات تیتانیوم دی اکسید برای حذف آلاینده سموم کشاورزی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی، گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه کردستان، سنندج

2 استادیار، گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه کردستان، سنندج

چکیده

حذف علف‌کش‌ کشاورزی بنتازون از طریق فرآیند تخریب فتوکاتالیستی با استفاده از کامپوزیت نانوساختار TiO2/Clinoptilolite با هدف مطالعه پتانسیل پایه طبیعی کلینوپتیلولیت و اثر مقدار TiO2 بارگذاری شده بر روی بازده فرآیند، ارزیابی شد. بدین منظور، فتوکاتالیست‌های TiO2/Clinoptilolite حاوی مقادیر متفاوتی از دی‌اکسید تیتانیم (%.wt 40 و 30، 20، 10) با استفاده از روش ساده و ارزان تلقیح مرطوب سنتز شدند و تحت آنالیز‌های XRD, FESEM, EDX, BET, PL, UV-vis قرار گرفتند. نتایج تست‌های شناسایی صحت سنتز نمونه‌های سنتزی را تایید کرد و نشان داد که به کارگیری پایه زئولیتی علاوه بر کاهش سرعت بازترکیب جفت‌های الکترون- حفره، پراکندگی نانوذرات دی‌اکسید تیتانیم را بهبود داده و تجمع این ذرات را کاهش می‌دهد. نتایج تست‌های راکتوری نشان داد که با افزایش مقدار بارگذاری TiO2 تا %.wt 30، بازده حذف بنتازون افزایش می‌یابد که این افزایش به دلیل تعداد سایت‌های فعال در دسترس بیشتر است. با افزایش بیشتر مقدار بارگذاری به دلیل افزایش تعداد کلوخه‌ها بر روی سطح کاتالیست و کاهش میزان جذب سطحی، درصد حذف فتوکاتالیستی کاهش می‌یابد. مطالعات سینتیکی نیز بیانگر سرعت تخریب بیشتر بنتازون به وسیله نمونه حاوی %.wt 30 دی‌اکسید تیتانیم و تبعیت نتایج از واکنش مرتبه اول است. برای حصول اطمینان از کارآیی فتوکاتالیست منتخب در حذف سایر سموم کشاورزی، کارآیی آن در حذف فتوکاتالیستی علف‌کش پاراکوات نیز بررسی شد که نتایج نشان از عملکرد مطلوب فتوکاتالیست سنتزی بود. به این ترتیب می‌توان نتیجه گرفت که تثبیت مقدار بهینه دی‌اکسید تیتانیم بر روی کلینوپتیلولیت، علاوه بر جداسازی بهتر و راحت‌تر به بهبود خواص نوری و ساختاری و در نهایت افزایش عملکرد فتوکاتالیستی منجر می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparation and Characterization of Clinoptilolite Impregnated with Titanium Dioxide Nanoparticles to Remove Agricultural Pesticides

نویسندگان [English]

  • E. Mehrjoo 1
  • F. Rahmani 2
  • R. Akbari Seneh 2
1 B.Sc Student, Dept. of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
2 Assistant Professor, Dept. of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
چکیده [English]

Removal of bentazone herbicide through photodegradation process using nanostructured TiO2/Clinoptilolite composite was studied to investigate the potential of clinoptilolite natural support and the effect of the loaded TiO2 content on the process efficiency. For this purpose, TiO2/Clinoptilolite photocatalysts containing different amounts of titania (10, 20, 30, 40 wt.%) were synthesized using a simple and inexpensive wet impregnation method and characterized by XRD, FESEM, EDX, BET, PL, and UV-vis analyses. The characterization results confirmed the successful synthesis of nanocomposite samples and showed that the use of zeolitic support, reducing the recombination rate of electron-hole pairs, improves the dispersion of titania nanoparticles and reduces the accumulation of these particles. The performance results showed that by increasing the TiO2 loading up to 30 wt.%, the removal efficiency of bentazone increases, which is due to the greater number of available active sites. By further increasing the amount of TiO2 loading, the percentage of photocatalytic removal decreases because of the increment in the number of agglomerations on the catalyst surface and the decrement in the adsorption capacity. Also, the kinetic studies show a higher rate of bentazone degradation over the sample containing 30 wt.% of titania and the results follow the first-order kinetic reaction. In order to ensure the efficiency of the selected photocatalyst in the removal of other agricultural pesticides, its efficiency in the photocatalytic removal of paraquat herbicide was also evaluated, which showed good performance. Thus, it can be concluded that the immobilization of the optimal amount of titania on clinoptilolite, in addition to better and easier separation, leads to improved optical and structural properties, and ultimately increased photocatalytic performance.

کلیدواژه‌ها [English]

  • Photodegradation
  • Bentazone
  • Paraquat
  • Clinoptilolite
  • Kinetic studies
  1. Puttaiah, S. H., Menon, S., Ravindra, Y. S., Kumari, S., Revanna, H., and David, J. (2021). “Preparation of supporting photocatalysts for water treatment using natural sunlight as an alternative driving energy”. Materials Today: Proceedings, 45: 3936-3944.
  2. Seck, E., Doña-Rodríguez, J. M., Fernández-Rodríguez, C., González-Díaz, O. M., Araña, J., and Pérez-Peña, J.  (2012). “Photocatalytical removal of bentazon using commercial and sol–gel synthesized nanocrystalline TiO2: Operational parameters optimization and toxicity studies”. Chemical Engineering Journal, 203: 52-62.
  3. Salman, J., and Hameed, B. (2010). “Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions”. Journal of Hazardous Materials, 175(1-3): 133-137.
  4. Berberidou, C., Kitsiou, V.,  Kazala, E., Lambropoulou, D. A.,  Kouras, A., Kosma, C. I., Albanis, T. A., and Poulios, P. (2017). “Study of the decomposition and detoxification of the herbicide bentazon by heterogeneous photocatalysis: Kinetics, intermediates and transformation pathways”. Applied Catalysis B: Environmental, 200: 150-163.
  5. Bach, M., Letzel, M., Kaul, U., Forstner, S., Metzner, G.,  Klasmeier, J., Reichenberger, S., and Frede, H. G. (2010). “Measurement and modeling of bentazone in the river Main (Germany) originating from point and non-point sources”. Water Research, 44(12): 3725-3733.
  6. Marien, C. B. D., Pivert, M. L., Azaïs, A., M’Bra, I. C., Drogui, P., Dirany, A., and Robert, D. (2019). “Kinetics and mechanism of Paraquat’s degradation: UV-C photolysis vs UV-C photocatalysis with TiO2/SiC foams”. Journal of Hazardous Materials, 370: 164-171.
  7. Desipio, M. M., Thorpe, R., and Saha, D. (2018). “Photocatalytic decomposition of paraquat under visible light by carbon nitride and hydrogen peroxide”. Optik, 172: 1047-1056.
  8. Peydayesh, M., Kazemi, P., Bandegi, A., Mohammadi, T., and Bakhtiari, O. (2015). “Treatment of bentazon herbicide solutions by vacuum membrane distillation”. Journal of Water Process Engineering, 8: e17-e22.
  9. Spaltro, A., Simonetti, S., Torrellas, S. A., Rodriguez, J. G., Ruiz, D., Juan, A., and Allegretti, P. (2018). “Adsorption of bentazon on CAT and CARBOPAL activated carbon: Experimental and computational study”. Applied Surface Science, 433: 487-501.
  10. Dhaouadi, A., and Adhoum, N. (2009). “Degradation of paraquat herbicide by electrochemical advanced oxidation methods”. Journal of Electroanalytical Chemistry, 637(1-2): 33-42.
  11. Sorolla II, M. G., Dalida, M. L., Khemthong, P., and Grisdanurak, N. (2012). “Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light”. Journal of Environmental Sciences, 24(6): 1125-1132.
  12. Wei, X., Wang, X., Pu, Y., Liu, A., Chen, C., Zou, W., Zheng, Y., Huang, J., Zhang, Y., Yang, Y., Naushad, M., Gao, B., and Dong, L. (2021). “Facile ball-milling synthesis of CeO2/g-C3N4 Z-scheme heterojunction for synergistic adsorption and photodegradation of methylene blue: characteristics, kinetics, models, and mechanisms”. Chemical Engineering Journal, 420(2): 127719.
  13. Akbari Sene, R., Moradi, G. R., Sharifnia, S., and Rahmani, F. (2020). “Hydrogen evolution via water splitting using TiO2 nanoparticles immobilized on aluminosilicate mineral: synergistic effect of porous mineral and TiO2 content”. 208: 273-286.
  14. اکبری سنه، ر.، شریف نیا، ش، مرادی، غ.؛ 1393؛ "افزایش تولید فتوکاتالیستی هیدروژن از طریق بکارگیری تابش التراسوند در طول فرآیند سنتز فتوکاتالیست تیتانیا روی پایه کلینوپتیلولیت". پژوهش نفت، دوره 27، شماره 93، ص 52-39.
  15. Mohamed, R. M., Ismail, A. A., Othman, I., and Ibrahim, I. A. (2005). “Preparation of TiO2-ZSM-5 zeolite for photodegradation of EDTA”. Journal of Molecular Catalysis A: Chemical, 238(1-2): 151-157.
  16. Pastrana-Martínez, L. M., Morales-Torres, S., Kontos, A. G., Moustakas, N. G., Faria, J. L., Doña-Rodríguez, J. M., Falaras, P., and Silva, A. M. T. (2013). “TiO2, surface modified TiO2 and graphene oxide-TiO2 photocatalysts for degradation of water pollutants under near-UV/Vis and visible light”. Chemical Engineering Journal, 224: 17-23.
  17. Akbari Sene, R., Moradi, G. R., and Sharifnia, S. (2017). “Sono-dispersion of TiO2 nanoparticles over clinoptilolite used in photocatalytic hydrogen production: Effect of ultrasound irradiation during conventional synthesis methods”. Ultrasonics Sonochemistry, 37: 490-501.
  18. Rahmani, F., Haghighi, M., and Mahboob, S. (2016). “CO2-enhanced dehydrogenation of ethane over sonochemically synthesized Cr/clinoptilolite-ZrO2 nanocatalyst: Effects of ultrasound irradiation and ZrO2 loading on catalytic activity and stability”. Ultrasonics Sonochemistry, 33: 150-163.
  19. Nezamzadeh-Ejhieh, A., and Zabihi-Mobarakeh, H. (2014).“Heterogeneous photodecolorization of mixture of methylene blue and bromophenol blue using CuO-nano-clinoptilolite”. Journal of Industrial and Engineering Chemistry, 20(4): 1421-1431.
  20. Yan, Z., Yu, X., Zhang, Y., Jia, H., Sun, Z., and Du, P. (2014).“Enhanced visible light-driven hydrogen production from water by a noble-metal-free system containing organic dye-sensitized titanium dioxide loaded with nickel hydroxide as the cocatalyst”. Applied Catalysis B: Environmental, 160: 173-178.
  21. Sreethawong, T., Junbua, C., and Chavadej, S. (2009). “Photocatalytic H2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO2 nanocrystal photocatalyst”. Journal of Power Sources, 190(2): 513-524.
  22. Wang, C., Shi, H., and Li, Y. (2012). “Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts”. Applied Surface Science, 258(10): 4328-4333.
  23. Park, M., Kwak, B. S., Jo, S. W., and Kang, M. (2015). “Effective CH4 production from CO2 photoreduction using TiO2/x mol% Cu–TiO2 double-layered films”. Energy Conversion and Management, 103: 431-438.
  24. Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., and Honda, M. (1997). “Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt”. Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical, 101(14): 2632-2636.
  25. Yahiro, H., Miyamoto, T., Watanabe, N., and Yamaura, H. (2007). “Photocatalytic partial oxidation of α-methylstyrene over TiO2 supported on zeolites”. Catalysis Today, 120(2): 158-162.
  26. Yoong, L., Chong, F. K., and Dutta, B. K. (2009). “Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light”. Energy, 34(10): 1652-1661.
  27. Jiang, C., Lee, K. Y., Parlett, C. M. A., Bayazit, M. K., Lau, C. C., Ruan, Q., Moniz, S. J. A., Lee, A. F., and Tang, J. (2016). “Size-controlled TiO2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen production”. Applied Catalysis A: General, 521: 133-139.
  28. Wang, C. and Li, Y. (2014). “Preparation and characterisation of S doped TiO2/natural zeolite with photocatalytic and adsorption activities”. Materials Technology, 29(4): 204-209.
  29. Akbari Sene, R., Sharifnia, S. and Moradi, G. R. (2018). “On the impact evaluation of various chemical treatments of support on the photocatalytic properties and hydrogen evolution of sonochemically synthesized TiO2/Clinoptilolite”. International Journal of Hydrogen Energy, 43(2): 695-707.
  30. Hieu, V.Q., Phung, T. K., Nguyen, T-Q., Khan, A., Doan, V. D., Tran, V. A., and le, V. T. (2021). “Photocatalytic degradation of methyl orange dye by Ti3C2–TiO2 heterojunction under solar light”. Chemosphere, 276: 130154.