Effect of Galvanic Interactions Between Grinding Media and Sulfide Minerals on Flotation Kinetics of Chalcopyrite

نوع مقاله : علمی-پژوهشی انگلیسی

نویسندگان

1 M.Sc, Dept. of Mining Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran

2 Assistant Professor, Dept. of Mining Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran

3 Associate Professor, Dept. of Mining Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran

چکیده

Although the flotation separation of sulfides and their electrochemical interactions have been examined in some investigations, study the direct relationship between the flotation kinetics of sulfides and their galvanic interactions during the process yet has not been addressed. To fill this gap, an extensive study was conducted to explore the effect of galvanic interactions for chalcopyrite and pyrite on their flotation kinetics when they are wetting ground by three different grinding media types (steel, chromium, and ceramic). Assessment of the flotation test results indicated that there was no galvanic interaction between the ceramic grinding balls and chalcopyrite. The galvanic interactions were mostly related to the grinding of chalcopyrite by steel balls. EDTA analysis showed that by increasing the amount of iron oxy/hydroxy and their precipitations on the surface of chalcopyrite, the recovery of chalcopyrite was decreased. Furthermore, increasing the pyrite content in the flotation of chalcopyrite increased the flotation rate constant and then decreased it. Flotation tests demonstrated that grinding chalcopyrite by ceramic media type, which has lower electrochemical activity in comparison with the other considered media, can be resulted in a higher flotation rate constant and ultimate recovery. Grinding the mixture of chalcopyrite and pyrite by steel or chromium media can show almost the same effect on the flotation rate constant and ultimate recovery. In general, the experimental results showed that by increasing the galvanic interaction, the flotation recovery and flotation kinetics were decreased.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

تاثیر برهمکنش‌های گالوانیکی بین محیط‌های آسیا و کانی‌های سولفیدی بر سینتیک فلوتاسیون کالکوپیریت

نویسندگان [English]

  • المیرا روان آسا 1
  • غلامرضا کریمی 2
  • رحمان احمدی 3
1 کارشناسی ارشد، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین
2 استادیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین
3 دانشیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین
چکیده [English]

اگرچه جداسازی فلوتاسیون سولفیدها و برهمکنش‌های الکتروشیمیایی آنها در برخی تحقیقات بررسی شده است، اما مطالعه رابطه مستقیم بین سینتیک شناورسازی سولفیدها و برهمکنش‌های گالوانیکی آنها در طول فرآیند هنوز مورد بررسی قرار نگرفته است. برای پر کردن این شکاف، یک مطالعه گسترده برای بررسی اثر برهمکنش‌های گالوانیکی کالکوپیریت و پیریت بر سینتیک شناورسازی آنها هنگام خیس شدن، به وسیله سه نوع آسیاب مختلف (فولاد، کروم و سرامیک) انجام شد. ارزیابی نتایج آزمایش فلوتاسیون نشان داد که هیچ برهمکنش گالوانیکی بین گلوله‌های خردایش سرامیکی و کالکوپیریت وجود ندارد. فعل و انفعالات گالوانیکی بیشتر مربوط به آسیاب کالکوپیریت به وسیله گلوله‌های فولادی بود. آنالیزهای EDTA نشان داد که با افزایش میزان اکسی/هیدروکسی آهن و رسوب آنها بر روی سطح کالکوپیریت، بازیابی کالکوپیریت کاهش یافت. علاوه بر این، افزایش محتوای پیریت در فلوتاسیون کالکوپیریت باعث افزایش ثابت نرخ شناور و سپس کاهش آن شد. آزمایش‌های فلوتاسیون نشان داد که آسیاب کالکوپیریت با نوع محیط سرامیکی که دارای فعالیت الکتروشیمیایی پایین‌تری در مقایسه با سایر محیط‌های در نظر گرفته شده است، به ثابت نرخ شناور بالاتر و بازیابی نهایی منجر می‌شود. آسیاب کردن مخلوط کالکوپیریت و پیریت به وسیله محیط‌های فولادی یا کروم تقریبا همان اثر را روی ثابت نرخ شناورسازی و بازیابی نهایی نشان می‌دهد. به طور کلی نتایج آزمایش‌های انجام ‌شده نشان داد که با افزایش اندرکنش گالوانیکی، بازیابی فلوتاسیون و سینتیک فلوتاسیون کاهش می‌یابد.

کلیدواژه‌ها [English]

  • برهمکنش گالوانیکی
  • گلوله‌های خردایش
  • کالکوپیریت
  • پیریت
  • استخراج EDTA
  1. Peng, Y., Grano, S., Fornasiero, D., and Ralston, J. (2003). “Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite”. International Journal of Mineral Processing, 69: 87-100. DOI: https://doi.org/10.1016/S0301-7516(02)00119-9.
  2. Huang, G., and Grano, S. (2006). “Galvanic interaction between grinding media and arsenopyrite and its effect on flotation Part I. Quantifying galvanic interaction during grinding”. International Journal of Mineral Processing, 78: 182-197. DOI: https://doi.org/10.1016/j.minpro.2005.10.008.
  3. Peng, Y., and Grano, S. (2010). “Inferring the distribution of iron oxidation species on mineral surfaces during grinding of base metal sulphides”. Electrochimica Acta, 55: 5470-5477. DOI: https://doi.org/10.1016/j.electacta.2010.04.097.
  4. Zhao, S., and Peng, Y. (2012). “The oxidation of copper sulfide minerals during grinding and their interactions with clay particles”. Powder Technology, 230: 112-117. DOI: https://doi.org/10.1016/j.powtec.2012.07.016.
  5. Azizi, A., Shafaei, S. Z., Noparast, M., and Karamoozian, M. (2013). “The effect of pH, solid content, water chemistry and ore mineralogy on the galvanic interactions between chalcopyrite and pyrite and steel balls”. Frontiers of Chemical Science and Engineering - Springer, 7: 464-471. DOI: https://doi.org/10.1007/s11705-013-1356-z.
  6. Azizkarimi, M., Tabaian, S. H., and Rezai, B. (2014). “Electrochemical Investigation of Chalcopyrite Oxidation in Alkaline Solutions Electrochemical Investigation of Chalcopyrite Oxidation”. Separation Science and Technology, 49: 37-41. DOI: https://doi.org/10.1080/01496395.2014.938272.
  7. Ke, B., and Chen, J. (2022). “Influence of galvanic interaction between chalcopyrite and galena on electrochemical and flotation behaviour of chalcopyrite”. Applied Surface Science. DOI: https://doi.org/10.1016/j.apsusc.2021.151475.
  8. Bruckard, W. J., Sparrow, G. J., and Woodcock, J. T. (2011). “A review of the effects of the grinding environment on the flotation of copper sulphides”. International Journal of Mineral Processing, 100: 1-13. DOI:  https://doi.org/10.1016/j.minpro.2011.04.001.
  9. Chen, X., and Peng, Y. (2015). “The effect of regrind mills on the separation of chalcopyrite from pyrite in cleaner flotation”. Minerals Engineering, 83: 33-43. DOI: https://doi.org/10.1016/j.mineng.2015.08.008.
  10. Allahkarami, E., Zarepoor, A., and Rezai, B. (2014). “Studies of grinding media corrosion from galvanic interaction on galena flotation”. International Journal of Nonferrous Metallurgy, 3: 29-34. DOI: 10.4236/ijnm.2012.33004.
  11. Yu, J., Yang, H., and Fan, Y. (2011). “Effect of potential on characteristics of surface film on natural chalcopyrite”. Transactions of Nonferrous Metals Society of China, 21: 1880-1886. DOI: https://doi.org/10.1016/S1003-6326(11)60945-X.
  12. He, S., Skinner, W., and Fornasiero, D. (2006). “Effect of oxidation potential and zinc sulphate on the separation of chalcopyrite from pyrite”. International Journal of Mineral Processing, 80: 169-176. DOI: https://doi.org/10.1016/j.minpro.2006.03.009.
  13. Huang, G., and Grano, S. (2006). “Galvanic interaction between grinding media and arsenopyrite and its effect on flotation: Part І. Quantifying galvanic interaction during grinding”. International Journal of Mineral Processing, 78: 182-197. DOI: https://doi.org/10.1016/j.minpro.2005.10.008.
  14. Censori, M., Marca, F. L., and Carvalho, M. T. (2016). “Separation of plastics: The importance of kinetics knowledge in the evaluation of froth flotation”. Waste Management, 39-43. DOI: https://doi.org/10.1016/j.wasman.2016.05.021.
  15. Radoev, B. P., Alexandrova, L. B., and Tchaljovska, S. D. (1990). ”On the kinetics of froth flotation”. International Journal of Mineral Processing, 28: 127-138. DOI: https://doi.org/10.1016/0301-7516(90)90031-S. 
  16. Ek, C. (1992). “Flotation Kinetics”. Innovations in Flotation Technology, 208: 183-210. DOI: https://doi.org/10.1007/978-94-011-2658-8_8.
  17. Feng, D., and Aldrich, C. (2004). “Influence of operating parameters on the flotation of apatite”. Minerals Engineering, 17: 453-455. DOI: https://doi.org/10.1016/j.mineng.2003.10.014.
  18. Vinnett, L., Alvarez-Silva, M., Jaques, A., Hinojosa, F., and Yianatos, J. (2015). “Batch flotation kinetics: fractional calculus approach”. Minerals Engineering, 77: 167-171. DOI: https://doi.org/10.1016/j.mineng.2015.03.020.
  19. Uçurum, M., and Bayat, O. (2007). “Effects of operationg variables on modified flotation parameters in the mineral separation”. Separation and Purification Technology, 55: 173-181. DOI: https://doi.org/10.1016/j.seppur.2006.11.019.
  20. Greet, C., and Smart, R. C. (2002). “Diagnostic leaching of galena and its oxidation products with EDTA”. Minerals Engineering, 15: 515-522. DOI: https://doi.org/10.1016/S0892-6875(02)00075-4.
  21. Rumball, J., and Richmond, G. D. (1996). “Measurement of oxidation in a base metal flotation circuit by selective leaching with EDTA”. International Journal of Mineral Processing, 48: 1-20. DOI: https://doi.org/10.1016/S0301-7516(96)00010-5.
  22. Bu, X., Xie, G., Peng, Y., Ge, L., and Ni, C. (2017). “Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery”. Physicochemical Problems of Mineral Processing, 53: 342-365. DOI: https://doi.org/10.5277/ppmp170128.
  23. Rezaei, B. (2012a). “Galvanic interactions in mineral processing”. Amir Kabir University of Technology (Jahad Daneshgahi), Tehran, Iran. (In Persian).
  24. Rezaei, B. (2012b). “Pulp chemistry”. Amir Kabir University of Technology (Jahad Daneshgahi), Tehran, Iran. (In Persian).
  25. Koleini, M. J., Soltani, F., and Abdollahi, M. (2013). “Optimization of the reagent types and dosage in selective flotation of Cu-Zn Taknar mine by using DX7-Optimal method of statistical experiments design”. Iranian Journal of Mining Engineering, 8(19): 1-11. (In Persian).
  26. Allah Karami, E., Zare poor, A., and Rezaei, B. (2016). “The study of galvanic interaction between Galena-grinding medium in a ball mill and Galena-Pyrite in a flotation cell by EDTA extraction technique”. Iranian Journal of Mining Engineering, 10: 19-29. (In Persian).
  27. Aldrich, C. (2013). “Consumption of steel grinding media in mills- A review”. Minerals Engineering, 49: 77-91. DOI: https://doi.org/10.1016/j.mineng.2013.04.023.
  28. Huang, G., and Grano, S. (2005). “Galvanic interaction of grinding media with pyrite and its effect on flotation”. Minerals Engineering, 18: 1152-1163. DOI: https://doi.org/10.1016/j.mineng.2005.06.005.
  29. Azizi, A., Shafaei, S. Z., Noparast, M., and Karamoozian, M. (2013). “Investigation of the electrochemical factors affecting the grinding environment of a porphyry copper sulphide ore”. Journal of Mining and Metallurgy, 49(1): 45-55.
  30. Ahmadi, R., Ravanasa, E., and Mirzapour, Y. (2018). “Exploring mechanism of xanthate adsorption on chalcopyrite surface: An atomic force microscopy study”. Journal of Mining and Environment, 9: 1009-1018. DOI: 10.22044/jme.2018.7173.1570.
  31. Zhang, J., and Zhang, W. (2014). “An atomic force microscopy study of the adsorption of collectors on chalcopyrite”. Microscopy: Advances in Scientific Research and Education, 2: 967-973.
  32. Agheli, S., Hassanzadeh, A., Vaziri Hassas, B., and Hasanzadeh, M. (2018). “Effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper in low and high pyritic ore types”. International Journal of Mining Science and Technology, 28: 167-176. DOI: https://doi.org/10.1016/j.ijmst.2017.12.002.
  33. Allahkarami, E., Poor, A. Z., and Rezai, B. (2017). “Pyrite flotation in the presence of galena. Study on galvanic interaction”. Physicochemical Problems of Mineral Processing, 53: 846-858. DOI: https://doi.org/10.5277/ppmp170214.
  34. Bowden, J. L., and Young, C. A. (2016). “Xanthate chemisorption at copper and chalcopyrite surfaces”. Journal- South African Institute of Mining and Metallurgy, 116: 503-508. DOI: http://dx.doi.org/10.17159/2411-9717/2016/v116n6a3.
  35. Xu, M. (1998). “Modified flotation rate constant and selectivity index”. Minerals Engineering, 11: 271-278. DOI: https://doi.org/10.1016/S0892-6875(98)00005-3.