ارزیابی ژئوشیمیایی سنگ‌های منشا و نفت‌های مخازن یکی از میادین نفتی ناحیه دشت آبادان

نوع مقاله : علمی-پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه اکتشاف نفت، دانشکده مهندسی نفت، دانشگاه سمنان، سمنان

2 استادیار، گروه اکتشاف نفت، دانشکده مهندسی نفت، دانشگاه سمنان، سمنان

چکیده

در این پژوهش پتانسیل هیدروکربن‌زایی سازندهای سنگ منشا احتمالی شامل پابده، کژدمی، گدوان، گرو و سرگلو مورد بررسی قرار گرفت. مهم‌ترین آنالیزها و مطالعات انجام‌ شده شامل پیرولیز راک-اول، مطالعات بایومارکری و ایزوتوپی است. نتایج حاصل از پیرولیز راک-اول نشان داد که در بین نمونه‌های مورد مطالعه، سازندهای پابده و کژدمی با کروژن نوع II/III و پتانسیل خوب تا خیلی خوب تولید نفت و بلوغ مواد آلی آنها به ترتیب در وضعیت نابالغ و نابالغ- اوایل پنجره نفتی قرار دارند. سازند گدوان با کروژن نوع II/III در وضعیت نابالغ- اوایل پنجره نفتی است و پتانسیل خوبی برای تولید نفت دارد. سازندهای گرو و سرگلو با کروژن نوع II پتانسیل خیلی خوب تولید نفت‌اند و به ترتیب در اواسط پنجره نفتی و اواخر پنجره نفتی-اوایل پنجره گاز تر قرار دارند. آنالیزهای ژئوشیمیایی بر روی نفت‌های مورد مطالعه نشان می‌دهد که منشا نفت‌های مورد مطالعه یکسان است و از سنگ‌های منشا احتمالی دارای ترکیب سنگ‌شناسی کربناته-مارنی تولید ‌شده و در شرایط احیایی نهشته شده‌‌اند. ماده آلی سنگ‌های منشا احتمالی به طور غالب کروژن نوع II بوده که محیط تشکیل آن دریایی با آثاری از مواد آلی با منشا قاره‌ای است. نفت‌های مورد مطالعه از سنگ منشایی به سن کرتاسه پایینی تا ژوراسیک میانی با بلوغ اواسط تا اواخر پنجره نفتی تولید شده، به طوری که نفت مخزن فهلیان بیشترین بلوغ را دارد. در این پژوهش سازندهای سرگلو (ژوراسیک میانی) و گرو (کرتاسه پایینی) به عنوان سنگ‌های منشا احتمالی برای نفت‌های مخازن مورد مطالعه ناحیه دشت آبادان پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Geochemical Evaluation of Source Rocks and Reservoir Oils of One of the Oil Fields in Abadan Plain

نویسندگان [English]

  • A. Kiani 1
  • M.H. Saberi 2
1 M.Sc, Dept. of Exploration, Faculty of Petroleum Engineering, Semnan University, Semnan, Iran
2 Assistant Professor, Dept. of Exploration, Faculty of Petroleum Engineering, Semnan University, Semnan, Iran
چکیده [English]

In this research, the hydrocarbon generation potential of probable source rocks was evaluated. Results of the Rock-Eval pyrolysis showed that, among the studied samples, the Pabdeh and Kazhdumi formations contained marine type-II/III kerogen and showed good to very good oil generation potential, making their organic matter (OM) immature and immature-in early oil production window, respectively. Containing mixed type-II/III kerogen, the Gadvan Formation was found to be within the oil production window, in terms of maturity, showing good hydrocarbon generation potential. The Sargelu and Garau formations were found to be dominated by type-II kerogen, exhibiting very good hydrocarbon generation potential. It was further figured out that the Garau and Sargelu formations were in the middle and late oil production window to early wet gas window, respectively. Outcomes of geochemical analyses on the studied crude samples showed that all of them were originated from the same source, with the potential source rock exhibiting a marl-carbonate lithology deposited in a reducing environment. The OM content of the probable source rock was primarily made from type-II kerogen formed in a marine environment, with evidence of intrusions by OMs dominated by terrestrial kerogen has been further observed. The studied crude samples were found to be sourced from Lower Cretaceous to Middle Jurassic source rocks with maturity levels corresponding to middle to late oil production window so that the crude samples from the Fahliyan Formation exhibited the highest levels of maturity. Sargelu and Garau formations were proposed as potential source rocks for the crudes accumulated in the Abadan Plain.

کلیدواژه‌ها [English]

  • Biomarker studies
  • Petroleum geochemistry
  • Hydrocarbon generation potential
  • Source rock
  • Stable isotopes
  1. کبرائئ، م.، ربانی، ا. ر.، طاعتی، ف.؛ 1396؛ "بررسی پتانسیل تولید در سازندهای منشا پابده (ترشیاری) و کژدمی (کرتاسه پایینی) در منطقه دشت آبادان". جنوب غرب ایران، مجله پژوهش نفت، شماره 93، ص 4-17.
  2. خلعت بری، م.، کمالی، م. ر.، آرین، م.، قربانی، ب.؛ 1398؛ "بررسی ژئوشیمیایی نفت مخازن آسماری و سروک در میدان نفتی پازنان و نفت مخزن خلیج در میدان نفتی خویز با استفاده از روش های کروماتوگرافی گازی و کروماتوگرافی طیف سنجی جرمی". مجله پژوهش نفت، شماره 107، ص 128-139.
  3. صابری، م. ح.، جلیلیان، ی.، ربانی، ا. ر.؛ 1398؛ "برآورد پتانسیل هیدروکربنزایی به وسیله پارامترهای سینتیکی و آنالیز پیرولیز راک-اول 6 سازند سرچاهان و میان لایه های زغالی سازندهای فراقون در ناحیه فارس ساحلی و خلیج فارس". نشریه مهندسی منابع معدنی، دوره چهارم، شماره 3، ص 15-36.
  4. Hunt, J. M. (1996). Petroleum Geochemistry and Geology. WH Freeman and Co. New York, pp. 621.
  5. Lafargue, E., Marquis, F., and Pillot, D. (1998). Rock-Eval 6 applications in hydrocarbon exploration, production. and soil contamination studies. Revue de l’institut français du pétrole, 53(4): 421-437.
  6. Behar, F., Beaumont, V., and Penteado, H. D. B. (2001). Rock-Eval 6 technology: performances and developments. Oil and Gas Science and Technology, 56(2): 111-134.
  7. Li, M., Stasiuk, L., Maxwell, R., Monnier, F., and Bazhenova, O. (2006). Geochemical and petrological evidence for Tertiary terrestrial and Cretaceous marine potential petroleum source rocks in the western Kamchatka coastal margin, RussiaOrganic Geochemistry, 37(3): 304-320.
  8. Espitalié, J., Marquis, F., and Barsony, I. (1984). “Geochemical logging. In Analytical pyrolysis, Butterworth-Heinemann, 276-304.
  9. Espitalie, J., Madec, M., and Tissot, B. (1980). Role of mineral matrix in kerogen pyrolysis: influence on petroleum generation and migration. AAPG Bulletin, 64(1): 59-66.
  10. شیری، م.، موسوی حرمی، س. ر.، رضایی، م، ر.، کدخدایی ایلخچی، ع.؛ 1391؛ "مقایسه پارامترهای پیرولیز راک-اول و بایومارکرها: مطالعه موردی سنگ منشا هورن والی سیلتستون، مرکز استرالیا". مجله زمین شناسی نفت ایران، سال سوم، شماره 4، ص90-104.
  11. Peters, K. E., and Moldowan, J. M. (1993). The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. Pretice-Hall, Englewood Cliffs, NJ, pp. 363.
  12. Waples, D. W., and Curiale, J. A. (1999). “Oil-oil and oil-source rock correlations. In: Beaumont, E.A., Foster, N.H. (Eds.), Exploring for Oil and Gas Traps”. American Association of Petroleum Geologist, Tulsa, Oklahoma, 8-71.
  13. Wang, Z., and Stout, S. (2010). Oil spill environmental forensics: fingerprinting and source identification. Elsevier.
  14. Arfaoui, A., Montacer, M., Kamoun, F., and Rigane, A. (2007). Comparative study between Rock-Eval pyrolysis and biomarkers parameters: a case study of Ypresian source rocks in central-northern TunisiaMarine and Petroleum Geology, 24(10): 566-578.
  15. زینل زاده، ا.، سجادیان؛ 1388؛ "بررسی زون های سنگ منشاء در میدان دارخوین با استفاده از داده های پتروفیزیک و آنالیز راک اول". مجله علوم دانشگاه تهران، جلد سی و پنجم، شماره 3، ص 63-70.
  16. علیزاده، ب.، سعادتی، ح.، حسینی، س. ح.؛ 1392؛ "بررسی ژئوشیمیایی و تعیین خانواده های نفتی مخزن آزادگان در میدان نفتی آزادگان". مجله زمین شناسی نفت ایران، شماره 6 سال 3، ص 21-33.
  17. اسدی مهماندوستی، ا.، معلمی، س. ع.، امیرحسینی، م.، حبیبی، ع.؛ 1394؛ "ارزیابی ژئوشمیایی نفت های خام مخازن سروک و فهلیان با استفاده از دادههای بیومارکری در یکی از میادین نفتی دشت آبادان". مجله زمین شناسی نفت ایران، سال پنجم، شماره 10، ص 46-66.
  18. Abeed, Q., Alkhafaji, A., and Littke, R. (2011). Source rock potential of the upper Jurassic–Lower Cretaceous succession in the southern Mesopotamian basin, southern Iraq. Journal of Petroleum Geology, 34(2): 117-134.
  19. کبرائئ، م.، ربانی، ا. ر.، جلالی، م.؛ 1396؛ "بررسی ژئوشیمیایی نفت مخزن گدوان در میادین منطقه ی دشت آبادان: جنوب غربی ایران". ماهنامه‌ی علمی- ترویجی اکتشاف و تولید نفت و گاز، شماره 148، ص 50-57.
  20. ده یادگاری، ا.، هنرمند، ج.؛ 1398؛ "ارزیابی ژئوشیمیایی نفت مخزن سروک در ناحیه غربی دشت آبادان و مقایسه پارامترهای بیوماکری آن با مخزن میشریف میادین عراقی". مجله پژوهشهای دانش زمین، سال دهم، شماره 40، ص 237-252.
  21. Berberian, M., and King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210-265.
  22. Moradi, M., Moussavi-Harami, R., Mahboubi, A., Khanehbad, M., and Ghabeishavi, A. (2017). Rock typing using geological and petrophysical data in the Asmari reservoir, Aghajari Oilfield, SW Iran. Journal of Petroleum Science and Engineering, 152: 523-537.
  23. Abdollahie Fard, I. A., Braathen, A., Mokhtari, M., and Alavi, S. A. (2006). “Interaction of the Zagros Fold-Thrust Belt and the Arabian-Type, Deep-Seated Folds in the Abadan Plain and the Dezful Embayment,SW Iran”. Petroleum Geoscience, 12(4): 347-362.
  24. Kent, P. E. (1979). “The emergent Hormuz salt plugs of southern Iran”. Journal of Petroleum Geology, 2(2): 117-144.
  25. Abdollahie Fard, I. A., Mokhtari, M., and Alavi, S. A. (2007). “The Main Structural Elements of the Abadan Plain (SW Iran) and the N. Persian Gulf Based on the Integrated Geophysical Data”. Geophysical Research Abstracts, 9: 111-146.
  26. Alavi, M. (2007). Structures of the Zagros fold-thrust belt in Iran. American Journal of Science, 307(9): 1064-1095.
  27. Sharland, P. R., Casey, D. M., Davies, R. B., Simmons, M. D., and Sutcliffe, O. E. (2001). “Arabian Plate Sequence Stratigraphy”. GeoArabia, Special Publication 2, 371.
  28. Assadi, Ali, Javad Honarmand, Seyed Ali Moallemi, and Iraj Abdollahie-Fard. 2018. “An Integrated Approach for Identification and Characterization of Palaeo-Exposure Surfaces in the Upper Sarvak Formation of Abadan Plain, SW Iran.” Journal of African Earth Sciences, 145: 32-48.
  29. Beydoun, Z. R., Clarke, M. W. H., and Stoneley, R. (1992). “Petroleum in the Zagros Basin: A Late Tertiary Foreland Basin Overprinted onto the Outer Edge of a Vast Hydrocarbon-Rich Paleozoic- Mesozoic Passive-Margin Shelf.” Foreland Basins and Fold Belts, 309-339.
  30. McQuarrie, N. (2004). Crustal scale geometry of the Zagros fold–thrust belt, Iran. Journal of Structural Geology, 26(3): 519-535.
  31. Assadi, A., Honarmand, J., Moallemi, S. A., and Abdollahie-Fard, I. (2016). Depositional environments and sequence stratigraphy of the Sarvak Formation in an oil field in the Abadan Plain, SW Iran. Facies, 62(4): 1-22.
  32. Beiranvand, B. (2007). “Mapping and Classifying Flow Units in the Upper Part of the Mid-Cretaceous Sarvak Formation (Western Dezful Embayment, Sw Iran)”. Journal of Petroleum Geology, 30(4): 357-373.
  33. Hollis, C., and Sharp, I. (2011). Albian–Cenomanian–Turonian carbonate-siliciclastic systems of the Arabian Plate: advances in diagenesis, structure and reservoir ristine. Petroleum Geoscience, 17(3): 207-209.
  34. مطیعی، ه.؛ 1372؛ "زمین شناسی ایران، چینه شناسی زاگرس". سازمان زمین شناسی کشور، 536 صفحه.
  35. Bordenave, M. L. (2002). The Middle Cretaceous to Early Miocene petroleum system in the Zagros domain of Iran, and its prospect evaluation. In AAPG annual meeting 6: 1-9.
  36. Sepehr, M., and Cosgrove, J. W. (2004).Structural framework of the Zagros fold–thrust belt, Iran. Marine and Petroleum Geology, 21(7): 829-843.
  37. Bordenave, M. L. (1993). “Applied petroleum geochemistry”. Editions Technip, France, pp. 525.
  38. Peters, K. E. (1986). “Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis.” AAPG Bulletin, 70: 318-329.
  39. Peters, K. E., and Cassa, M. R. (1994). Applied source rock geochemistry. Essential Elements, Chapter 5: Part II.
  40. Smith, J. T. (1994).“Petroleum System Logic as an Exploration Tool in a Frontier Setting”. AAPG Memoir, 60: 25-49.
  41. Dembicki, H. (2016). Practical petroleum geochemistry for exploration and production. Elsevier.
  42. Huang, B., Xiao, X., and Zhang, M. (2003). “Geochemistry, Grouping and Origins of Crude Oils in the Western Pearl River Mouth Basin, Offshore South China Sea”. Organic Geochemistry, 34(7): 993-1008.
  43. Tissot, B. P., and Welte, D. H. (1984).Petroleum Formation and Occurrence. Springer-Verlag, Berlin, Heidelberg.
  44. Jackson, K. S., Hawkins, P. J., and Bennett, A. J. R. (1980). “Regional Facies and Geochemical Evaluation of the Southern Denison Trough, Queensland.” The APPEA Journal, 20(1): 143-158.
  45. Saberi, M. H., Rabbani, A. R., and Ghavidel-syooki, M. (2016). Hydrocarbon potential and palynological study of the Latest Ordovician–Earliest Silurian source rock (Sarchahan Formation) in the Zagros Mountains, southern IranMarine and Petroleum Geology, 71: 12-25.
  46. Kaufman, R. L. (1990). Gas chromatography as a development and production tool for fingerprinting oils from individual reservoirs: applications in the Gulf of Mexico. In GCSSEPM Foundation Ninth Annual Research Conference Proceedings, 263-282.
  47. El Diasty, W. S., El Beialy, S. Y., Mostafa, A. R., El Adl, H. A., and Batten, D. J. (2017). Hydrocarbon source rock potential in the southwestern Gulf of Suez graben: Insights from organic geochemistry and palynofacies studies on well samples from the Ras El Bahar Oilfield. Marine and Petroleum Geology, 80: 133-153.
  48. Ourisson, G., Albrecht, P., and Rohmer, M. (1982). Predictive microbial biochemistry—from molecular fossils to ristineic membranesTrends in Biochemical Sciences, 7(7): 236-239.
  49. Hughes, W. B., Holba, A. G., and Dzou, L. I. (1995). The ratios of dibenzothiophene to phenanthrene and ristine to phytane as indicators of depositional environment and lithology of petroleum source rocksGeochimica et Cosmochimica Acta, 59(17): 3581-3598.
  50. Connan, J., and Cassou, A. M. (1980). Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levelsGeochimica et Cosmochimica Acta, 44(1): 1-23.
  51. Moldowan, J. M., Seifert, W. K., and Gallegos, E. J. (1985). Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69(8): 1255-1268.
  52. Bourbonniere, R. A., and Meyers, P. A. (1996). Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41(2): 352-359.
  53. Hanson, A. D., Zhang, S. C., Moldowan, J. M., Liang, D. G., and Zhang, B. M. (2000). Molecular organic geochemistry of the Tarim Basin, northwest ChinaAAPG Bulletin, 84(8): 1109-1128.
  54. صابری، م. ح.، حسینی، آ.؛ 1397؛ "مطالعه ژئوشیمیایی میعانات گازی نواحی کپه داغ، بندرعباس و ایران مرکزی با استفاده از داده های ایزوتوپی و بایومارکری". نشریه مهندسی گاز ایران، سال ششم، شماره نهم، ص 41-57.
  55. Huang, W. Y., and Meinschein, W. G. (1979). Sterols as ecological indicators. Geochimica et Cosmochimica Acta, 43(5): 739-745.
  56. Sofer, Z. (1984). Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. AAPG Bulletin, 68(1): 31-49.
  57. Holba, A. G., Ellis, L., Dzou, I. L., Hallam, A., Masterson, W. D., Francu, J., and Fincannon, A. L. (2001). Extended tricyclic terpanes as age discriminators between Triassic, Early Jurassic and Middle-Late Jurassic oils. In 20th International Meeting on Organic Geochemistry EAOG Nancy, France, 1: pp. 464.
  58. Peters, K. E., Clutson, M. J., and Robertson, G. (1999). Mixed marine and lacustrine input to an oil-cemented sandstone breccia from Brora, ScotlandOrganic Geochemistry, 30(4): 237-248.
  59. Chung, H. M., Rooney, M. A., Toon, M. B., and Claypool, G. E. (1992). Carbon isotope composition of marine crude oils. AAPG Bulletin, 76(7): 1000-1007.
  60. Chung, H. M., Claypool, G. E., Rooney, M. A., and Squires, R. M. (1994). Source characteristics of marine oils as indicated by carbon isotopic ratios of volatile hydrocarbonsAAPG Bulletin, 78(3): 396-408.