وارونسازی داده های مغناطیس سنجی در حضور مغناطیس پسماند

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دکترا، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد

2 دانشیار، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد

چکیده

طی سال‌های اخیر وارون‌سازی بردار مغناطیدگی داده‌های مغناطیس‌سنجی به دلیل آنکه اندازه بردار مغناطیدگی و جهت آن را همزمان مدل می‌کند، مورد توجه ویژه قرار گرفته است. با وارون‌سازی بردار مغناطیدگی به ویژه زمانی که آنومالی‌ها تحت تاثیر مغناطیس بازماندی قرار گرفته باشند، آنومالی‌های متفاوت از هم را به راحتی می‌توان تشخیص داد. در این تحقیق از روش وارون‌سازی بردار مغناطیدگی (MVI) استفاده شده است: یک مدل سه بعدی از داده‌های برداشت شده از سطح زمین که توزیع اندازه بردار مغناطیدگی و جهت آن را به صورت فشرده یا حتی هموار مدل می‌کند. معادلات به دلیل آنکه نیاز به حافظه دسترسی کاهش یافته و همچنین محاسبات کامپیوتری کمتری انجام گیرد و در نتیجه سرعت انجام مدلسازی بالاتر برود، به روش حداقل مربعات در فضای داده‌ها حل می‌شوند. در این الگوریتم از ترکیب سه ماتریس وزنی عمق، فاصله و ماتریس فشردگی در دستگاه کارتزین استفاده می‌شود. الگوریتم ارایه شده با دو مدل مصنوعی مورد راستی آزمایی قرار گرفته است: مدل اول یک دایک شیبدار با جهت مغناطیدگی عمود بر بردار مغناطیسی زمین و مدل دوم شامل دو توده شیبدار در عمق‌های متفاوت و مغناطیدگی متفاوت از هم است. با توجه به پاسخ مناسب برای داده‌های مصنوعی، داده‌های مغناطیس‌سنجی کانسار آهن شواز واقع در استان یزد مدلسازی شد و نتایج به دست آمده انطباق زیادی با زمین‌شناسی و اطلاعات حفاری داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Inversion of Magnetometric Data in the Presence of Remanent Magnetization

نویسندگان [English]

  • M.H. Ghalehnoee 1
  • A. Ansari 2
1 Ph.D, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
2 Associate Professor, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
چکیده [English]

Remanent magnetization is impossible to ignore in many applications of magnetic method including mineral exploration particularly iron ore, geomagnetism, regional investigation, and archaeological measurements. Magnetization vector inversion has made great attention in recent years since both distribution of the magnitude and direction of the magnetization have been obtained, therefore, it is easy to distinguish between different bodies especially when magnetic data are affected by remanent magnetization. In this research, the magnetization vector inversion (MVI) has presented: a 3D magnetic modelling is proposed from surface measurements to obtain magnetization distribution. The equations have solved in data-space least square to reduce computer memory requirements and speed up calculations. The algorithm has included the combination of three weights as depth weighting, distance weighting and compactness weighting in Cartesian direction. The method has been validated with a synthetic example including a dipping dyke and the results are acceptable compare with true magnetic anomaly.

کلیدواژه‌ها [English]

  • Magnetometry
  • Inversion
  • Remanent magnetization
  • Magnetization vector
  1. Li, Y. (2017). “From Susceptibility to Magnetization: Advances in the 3D Inversion of Magnetic Data in the Presence of Significant Remanent Magnetization”. Edited by Tschirhart, V., and Thomas, M. D., Proceedings of Exploration 17: Sixth Decennial International Conference on Mineral Exploration, 239-260.
  2. Li, Y., and Oldenburg, D. W. (1996). “3D inversion of magnetic data”. Geophysics, 61: 394-408.
  3. Li, Y., and Oldenburg, D. W. (2003). “Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method”. Geophysical Journal International, 152: 251-265.
  4. Pilkington, M. (1997). “3-D magnetic imaging using conjugate gradients”. Geophysics, 62: 1132-1142.
  5. Portniaguine, O., and Zhdanov M. S. (1999). “Focusing geophysical inversion images”. Geophysics, 64: 874-887. DOI: 10.1190/1.1444596.
  6. Li, Y., Shearer, S. E., Haney, M. M., and Dannemiller, N. (2010). “Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization”. Geophysics, 75: L1-L11.
  7. Lourenco, J. S., and Morrison, H. F. (1973). “Vector magnetic anomalies derived from measurements of a single component of the field”. Geophysics, 38: 359-368.
  8. Phillips, J. D. (2005). “Can we estimate total magnetization directions from aeromagnetic data using Helbig’s formulas”. Earth, Planets, and Space, 57: 681-689.
  9. Dannemiller, N., and Li, Y. (2006). “A new method for estimation of magnetization direction”. Geophysics, 71: L69-L73.
  10. Bilim, F., and Ates, A. (2004). “An enhanced method for estimation of body magnetization direction from pseudogravity and gravity data”. Computers & Geosciences, 30: 161-171.
  11. Haney, M., and Li., Y. (2002). “Total magnetization direction and dip from multiscale edges”. 72nd Annual International Meeting, SEG, Expanded Abstracts, 735-738.
  12. Haney, M., Johnston, C., Li, Y., and Nabighian, M. (2003). “Envelopes of 2D and 3D magnetic data and their relationship to the analytic signal: Preliminary results”. 73rd Annual International Meeting, SEG, Expanded Abstracts, 596-599.
  13. Shi, Z., den Hartog, M., Pryer, L., Djomani, Y. P., and Connors, K. (2013). “A new technique for low magnetic latitude transformation: Synthetic model results and examples”. ASEG Extended Abstracts 2013.
  14. Nabighian, M. (1972). “The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation”. Geophysics, 37: 507-517.
  15. Nabighian, M. (1984). “Towards a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations”. Geophysics, 49: 780-786.
  16. Roest, W. R., Verhoef, J., and Pilkington, M. (1992). “Magnetic interpretation using the 3-D analytic signal”. Geophysics, 57: 116-125.
  17. Stavrev, P., and Gerovska, D. (2000). “Magnetic field transforms with low sensitivity to the direction of source magnetization and high centricity”. Geophysical Prospecting, 48: 317-340.
  18. Wilson, H. S. (1985). “Analysis of the magnetic gradient tensor: Defence Research Establishment Pacific”. Technical Memorandum, 8: 5-13.
  19. Beiki, M., Clark, D. A., Austin, J. R., and Foss, C. (2012). “Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data”. Geophysics, 77: J23-J37.
  20. Shearer, S. (2015). “Three-dimensional inversion of magnetic data in the presence of remanent magnetization”. M.Sc. thesis, Colorado School of Mines.
  21. Pilkington, M., and Beiki, M. (2013). “Mitigating remanent magnetization effects in magnetic data using the normalized source strength”. Geophysics, 78: J25-J32.
  22. Liu, S., Hu, X., Liu, T., Feng, J., Gao, W., and Qiu, L. (2013) “Magnetization vector imaging for borehole magnetic data based on magnitude magnetic anomaly”. Geophysics, 78: D429-D444
  23. Liu, S., Hu, X., Xi, Y., Liu, T., and Xu, S. (2015). “2D sequential inversion of total magnitude and total magnetic anomaly data affected by remanent magnetization”. Geophysics, 80: K1-K12.
  24. Liu, S., Hu, X., Zhang, H., Geng, M., and Zuo, B. (2017). “3D magnetization vector inversion of magnetic data: improving and comparing methods”. Pure and Applied Geophysics, 174: 4421-4444.
  25. Kubota, R., and Uchiyama, A. (2005). “Three-dimensional magnetization vector inversion of a seamount”. Earth Planets Space, 57: 691-699.
  26. Lelièvre, P. G., and Oldenburg, D. W. (2009). “A 3D total magnetization inversion applicable when significant, complicated remanence is present”. Geophysics, 74(3): L21-L30.
  27. Ellis, R. G., de Wet, B., and Macleod, I. N. (2012). “Inversion of magnetic data for remanent and induced sources”. ASEG Extended Abstracts 2012.
  28. Fournier, D. (2015). “A Cooperative Magnetic Inversion Method with Lp-norm Regularization”. MSc Thesis, University of British Columbia.
  29. Fournier, D. (2019). “Advanced potential field data inversion with Lp-norm regularization”. PhD. thesis, The University of British Columbia.
  30. Tarantola, A. (1987). “Inverse problem theory”. Elsevier Science.
  31. Li, Y., and Oldenburg, D. W. (2000). “Joint inversion of surface and three-component borehole magnetic data”. Geophysics, 65: 540-552.
  32. Last, B. J., and Kubik, K. (1983). “Compact gravity inversion”. Geophysics, 34: 65-74.