معرفی دو روش مبتنی بر داده برای تعیین کیفیت رخساره‌های گازی در غرب استرالیا

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده مهندسی معدن، دانشگاه تهران، تهران

2 استاد، دانشکده مهندسی معدن، دانشگاه تهران، تهران

چکیده

در تعیین نقاط بهینه حفاری‌های تولیدی مهم است که زون‌های با کیفیت مخزنی مشخص باشند. برای این منظور از داده‌های ژئوشیمیایی که معمولا تعداد آن‌ها کم است استفاده می‌کنند. این گسستگی داده‌ها باعث ایجاد شکاف اطلاعاتی می‌شود. چنانچه از داده‌هایی با پیوستگی بیشتر استفاده شود طوری که دقت مدل‌سازی مناسب باشد، حفاری‌ها با شانس بیشتری انجام می‌شود. در این مطالعه هدف بر این است تا کیفیت رخساره‌های گازی با استفاده از دو روش ناپارامتری آماری (پارزن) و تکنیک یادگیری عمیق با نظارت (شبکه عصبی بازگشتی حافظه کوتاه‌مدت بلند LSTM) و به کمک داده‌های نگار چاه و لرزه‌ای مدل شوند. همچنین در نظر است شبکه طراحی شده به وسیله دو روش بهینه‌سازی ابتکاری الگوریتم رقابت استعماری و الگوریتم نهنگ بهینه‌سازی ‌شود. نتایج حاصل از این مطالعه نشان می‌دهد که هر دو روش نتایج خوبی در طبقه‌بندی دارند، طوری که مدل‌سازی کیفیت رخساره‌های گازی با استفاده از تکنیک یادگیری عمیق با نظارت با دقت بیشتری (87%) نسبت به روش ناپارامتری پارزن (83%) انجام گرفته است. همچنین با اعمال الگوریتم‌های بهینه‌سازی دقت شبکه بیشتر شده است. بهترین دقت مربوط به شبکه LSTM بهینه شده با الگوریتم رقابت استعماری  (90%) است. گزارش‌ها و داده‌های ژئوشیمیایی مغزه‌های چاه، اعتبارسنجی بالای این مدل‌سازی‌ها را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Introduction of Two Data-Driven Methods for Determining the Quality of Gas Facies in Western Australia

نویسندگان [English]

  • Y. Asgari Nezhad 1
  • A. Moradzadeh 2
1 Ph.D Student, Dept. of Mining Engineering, University of Tehran, Tehran, Iran
2 Professor, Dept. of Mining Engineering, University of Tehran, Tehran, Iran
چکیده [English]

In determining the optimal points of production drilling, it is important to identify areas of suitable reservoir quality. For this purpose, the use of geochemical data, which is usually small in number, is common. This data discontinuity creates information gaps. If one uses more continuous data so that its modeling accuracy is suitable, the drilling could be then performed with more success. In this study, seismic and well logs data were used to classify the quality of gas facies by two non-parametric statistical (Parzen) and supervised deep learning techniques (long-term short-term memory network (LSTM)). The LSTM network was then also optimized by two heuristic optimization methods (Imperialistic competition algorithm and Whale algorithm). The obtained results indicate that both methods produce good results in classification so that the modeling accuracy of gas facies quality using supervised deep learning technique (87%) is more than that of the non-parametric Parzen (83%) method. Moreover, the application of optimization algorithms has increased the classification accuracy. The best accuracy is related to the LSTM network optimized with the imperialistic competition algorithm (90%). Geochemical reports and well cores data show the high validity of these models.

کلیدواژه‌ها [English]

  • Quality of gas facies
  • LSTM network
  • Parzen
  • Imperialistic competition algorithm
  • Whale optimization algorithm
  1. Passey, Q., Creaney, S., Kulla, J., Moretti, F., and Stroud, J. (1990). “A practical model for organic richness from porosity and resistivity logs”. AAPG Bulletin, 74(12): 1777-1794. DOI: 10.1306/0C9B25C9-1710-11D7-8645000102C1865D.
  2. Herron, S. L. (1991). “In Situ Evaluation of Potential Source Rocks by Wireline Logs”. Geochemical Methods and Exploration, Chapter 13. DOI: https://doi.org/10.1306/TrHbk624C6.
  3. Mahmoud, A. A. A., Elkatatny, S., Mahmoud, M., Abouelresh, M., Abdulraheem, A., and Ali, A. (2017). “Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network”. International Journal of Coal Geology, 179: 72-80.
  4. Shalaby, M. R., Jumat, N., Lai, D., and Malik, O. (2019). “Integrated TOC prediction and source rock characterization using machine learning, well logs and geochemical analysis: Case study from the Jurassic source rocks in Shams Field, NW Desert, Egypt”. Journal of Petroleum Science and Engineering, 176: 369-380.
  5.  Zhu, L., Zhang, Ch., Zhang, Ch., Wei, Y., Zhou, X., Cheng, Y., Huang, Y., and Zhang, L. (2018). “Prediction of total organic carbon content in shale reservoir based on a new integrated hybrid neural network and conventional well logging curves”. Journal of Geophysics and Engineering, 15(3): 1050-1061.
  6. Tan, M., Song, X., Yang, X., and Wu, Q. (2015). “Support-vector-regression machine technology for total organic carbon content prediction from wireline logs in organic shale: A comparative study”. Journal of Natural Gas Science and Engineering, 26: 792-802.
  7. Wang, P., Peng, S., and He, T. (2018). “A novel approach to total organic carbon content prediction in shale gas reservoirs with well logs data, Tonghua Basin, China”. Journal of Natural Gas Science and Engineering, 55: 1-15.
  8. Rui, J., Zhang, H., Zhang, D., Han, F., and Guo, Q. (2019). “Total organic carbon content prediction based on support-vector-regression machine with particle swarm optimization”. Journal of Petroleum Science and Engineering, 180: 699-706.
  9. Handhal, A. M., Al-Abadi, A. M., Chafeet, H. E., and Ismail, M. J. (2020). “Prediction of total organic carbon at Rumaila oil field, Southern Iraq using conventional well logs and machine learning algorithms”. Marine and Petroleum Geology, 116: 104347.
  10. Bello, H. D., Barzola, G., Portis, D., Tinnin, B., Handke, M., and Clemons, K. (2013). “Multiuse of Seismic and Attribute Mapping for Field Appraisal and Development in the Eagle Ford Shale: Mapping TOC, Porosity and Seal Integrity”. Paper presented at the Unconventional Resources Technology Conference.
  11. Altowairqi, Y., Rezaee, R., Evans, B., and Urosevic, M. (2015). “Shale elastic property relationships as a function of total organic carbon content using synthetic samples”. Journal of Petroleum Science and Engineering, 133: 392-400.
  12. An, P., and Cao, D. (2018). “Shale content prediction based on LSTM recurrent neural network”. Paper presented at the SEG 2018 Workshop: SEG Maximizing Asset Value Through Artificial Intelligence and Machine Learning, Beijing, China, 17-19 September 2018.
  13. Wang, H., Wu, W., Chen, T., Dong, X., and Wang, G. (2019). “An improved neural network for TOC, S1 and S2 estimation based on conventional well logs”. Journal of Petroleum Science and Engineering, 176: 664-678.
  14. Zhu, L., Zhang, C., Zhang, Z., Zhou, X., and Liu, W. (2019). “An improved method for evaluating the TOC content of a shale formation using the dual-difference ΔlogR method”. Marine and Petroleum Geology, 102: 800-816.
  15. Zhu, L., Zhang, C., Zhang, C., Zhang, Z., Nie, X., Zhou, X., Liu, W., and Wang, X. (2020). “Forming a new small sample deep learning model to predict total organic carbon content by combining unsupervised learning with semisupervised learning”. Applied Soft Computing, 83: 105596.
  16. Sohail, G. M., Hawkes, C. D., and Yasin, Q. (2020). “An integrated petrophysical and geomechanical characterization of Sembar Shale in the Lower Indus Basin, Pakistan, using well logs and seismic data”. Journal of Natural Gas Science and Engineering, 78: 103327.
  17. Kennard, J., Jackson, M., Romine, K., Shaw, R., and Southgate, P. (1994). “Depositional sequences and associated petroleum systems of the Canning Basin, WA”. Petroleum Exploration Society of Australia (PESA), pp. 657.
  18. Quintavalle, M., and Playford, G. (2008). “Stratigraphic distribution of selected acritarchs in the Ordovician subsurface, Canning Basin, Western Australia”. Revue de Micropaléontologie, 51(1): 23-37.
  19. Garcia, M. P., Sanchez, G., Dentith, M., and George, A. (2014). “Regional structural and stratigraphic study of the Canning Basin, Western Australia”. Department of Mines and Petroleum Government of Western Australia.
  20. Cawood, P. A., and Korsch, R. (2008). “Assembling Australia: Proterozoic building of a continent”. Precambrian Research, 166(1-4): 1-35.
  21. Cadman, S. J., Pain, L., Vuckovic, V., and Le Poidevin, S. R. (1993). “Canning Basin, W.A.”. Bureau of Resource Sciences, Australian Petroleum Accumulations, Report 9.
  22. Duda, R. O., Hart, P. E., and Stork, D. G. (2012). “Pattern classification”. John Wiley & Sons.
  23. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). “ImageNet classification with deep convolutional neural networks”. Paper presented at the Advances in neural information processing systems.
  24. Olah, Ch. (2015). “Understanding LSTM Networks”. Available on: http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
  25. Atashpaz-Gargari, E., and Lucas, C. (2007). “Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition”. IEEE Congress on Evolutionary Computation, 2007: 4661-4667. DOI: 10.1109/CEC.2007.4425083.
  26. Watkins, W. A., and Schevill, W. E. (1979). “Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus”. Journal of Mammalogy, 60(1): 155-163.
  27. Mirjalili, S., and Lewis, A. (2016). “The whale optimization algorithm”. Advances in engineering software, 95, 51-67.
  28. Wei, J., and Guo, Q. (2011). “Seismic technology in shale gas exploration and development”. Paper presented at the 27th annual meeting proceedings. Beijing: Chinese Geophysical Society.
  29. Peng, Q., and Du, B. (2013). “Study on geological condition of shale gas accumulation in Qiangtang Basin”. Journal of Southwest Petroleum University (Science & Technology Edition), 35: 9-17.
  30. Suárez-Ruiz, I., Flores, D., Mendonça Filho, J. G., and Hackley, P. C. (2012). “Review and update of the applications of organic petrology: Part 1, geological applications”. International Journal of Coal Geology, 99: 54-112.
  31. Tissot, B. P., and Welte, D. H. (2013). “Petroleum formation and occurrence”. Springer Science & Business Media.